PRINT MEDIA TECHNOLOGIES
»To become a qualified specialist in the field of Print Media means to become a technical engineer, creative designer, and capable business executive all at the same time. «
In the south of Stuttgart’s large university campus in the district of Vaihingen lies the Hochschule der Medien. Home to the Max Planck and Fraunhofer institutes, the campus boasts award-winning architecture and well equipped facilities for students to take advantage of. The vast range of sports opportunities, well maintained libraries, and events make student life at the HdM engaging and entertaining.

Whilst being located on the periphery of Stuttgart, but only three S-Bahn stations to the city centre, the HdM is ideally situated having the Rotwildpark on the campus doorstep, where the picturesque Bärenseen and the Bärenschlössle can be found. Stuttgart has a lot to offer culturally, such as the State Gallery and Art Museum, the State Theater with plays, ballet, and opera and numerous cinemas. The city’s key landmarks include the TV tower, the Wilhelma Zoo, the Mercedes-Benz Museum, the Weissenhofsiedlung, and the Cannstatter Wasen – all of which are absolutely worth visiting. There is a range of great night clubs for all sorts of music tastes along the Theodor-Heuss-Straße and the numerous quaint pubs and bars in the city center are also very popular amongst students.

HdM aims at securing and strengthening the position of Baden-Wuerttemberg’s media industry over the long term – by encouraging and helping students to settle here and promoting cooperative ventures between the media industry and world-leading businesses.
Print Media Technologies, a Bachelor of Engineering program at Hochschule der Medien in Stuttgart, Germany, is a unique study course which combines creativity, science, technology, economics, intercultural studies, corporate management and languages.

It’s aimed at students who are interested in working within an international environment. All lectures are held in English and each student studies a foreign language as part of the curriculum. Therefore, most graduates speak three languages, which strongly supports worldwide employment.

There is a high demand for graduates across the industry, and the Print Media Technologies bachelor degree will help you develop fundamental skills to flourish in whatever area interests you most. Marketing, management, production, research and design are the main parts you could focus on. The six-month work placement in the 5th semester is an excellent opportunity to gain industry experience and explore future employment possibilities.

The duration of this Bachelor of Engineering in Print Media Technologies is a minimum of 7 semesters (3.5 years). Have a look at the next pages for insights from our students and visit our webpage www.hdm-stuttgart.de/pmt for more details about the structure of the degree programme, including details of all the courses you will attend.
Print communication is a massive and a fascinating industry. To become a qualified specialist in the field means to become a technical engineer, a creative designer, and a capable business executive all at the same time.«

(Hunter Bliss, Student, 2017)

A Bachelor in Print Media Technologies opens the door to personal growth and discovery. As you learn to say ‘Hello’ in German, make friends and eat exciting new food, it is bound to take your self-confidence to the next level. In the new environment at the Hochschule der Medien you are able to enter a new world in media and in exciting technologies.

Graduates of Print Media Technologies have a wide range of careers to choose from. Your employer may be a global business involved in media production and engineering or even a creative technologist. You will be prepared to work in marketing, management, production, research and design.
As all offered courses at Hochschule der Medien, Print Media Technologies is credit rated. For each semester you should achieve 30 credit points and you need to accumulate a total of 210 credits to be awarded the Bachelor of Engineering qualification.

If you manage to achieve 30 credits (ECTS) per semester, you will graduate after seven semesters (3½ years). This is the recommended manner to accomplish this Bachelor.

STEM = Science, Technology, Engineering, Mechanics
Printing is all around us, on nearly everything we interact with in daily life, wherever we are.

In this efficient digital age, print makes our lives more colourful. We love colour! The symbiosis between the Internet and print media has revolutionised the way we communicate, which has triggered new marketing strategies and a whole range of exciting new printed products.

Creating a real product is the ultimate goal for us. It evolves through diligent team work and is based upon a foundation of jointly developed ideas, converting the abstract into tangible piece of art.
Commercial printing is any technology used for printing marketing collaterals, books, newspapers, flyers, booklets, magazines, posters and single sheets. This involves non-impact and impact printing.

Non-impact printing involves anything that uses digital data for direct printing. Digital printing presses use variable data for the individualisation and personalisation of printed images. It is widely used in advertising. Variable-data printing (VDP) is a digital printing technology using information from a database or external source. Elements such as text, graphics and images may be modified or exchanged from one printed sheet to the next, without stopping the printing process. The subject is about programming, workflows, file formats, functional principles and designs of different press technologies. It includes methods of colour printing and screening processes.

Impact printing involves any printing technologies using printing plates. Lithography is a process widely used for commercial printing. This technology is employed for printing magazines, newsletters, tabloids and books. The technology involves large web- or sheet-fed offset presses, which run at high speeds.

Packaging is a growing market, from corrugated boxes to self-adhesive labels, from shrink films to deep-freeze packaging, from potato crisp bags to milk containers, and from poly-tubes to snack food wrappers.

Flexography is the major technology used in packaging printing. It is a process that utilises a flexible relief printing plate referred to as a photopolymer plate. It is essentially a modern version of letterpress which is largely employed for printing on all types of flexible substrates, including plastic, metallic films, cellophane, and paper. New trends in packaging printing concern wellness, lifestyle, health, intelligent packaging and individualisation. These trends deliver a growing demand and a greater diversity for printed flexible packaging, paper and board.

Décor Printing is an application which involves the printing of wrapping paper, furniture design, carpet design, tiles, toys and many more creative products that require bespoke printing technologies. The technologies are primarily for creating multiple forms of seamless interior design such as wood or floor patterns. The technologies used are rotogravure, screen-printing and ink-jet printing.
Rotogravure, for instance, is an intaglio printing process that uses rotary printing capable of producing continuous tone images. Large copper-plated steel cylinders are engraved with the chosen design using a laser or diamond-tipped stylus. The engravings are referred to as ‘cells’ and are etched in differing depths, with deeper cells providing more intense colour. It requires an understanding for the special demands of substrates and the ability to discriminate and judge printed material in terms of material parameters and colorimetry.

Textile printing is an application used in the production of garments, curtains, bags, and industrial textiles. Screen printing is a typical technology used for printing on textiles. This printing method is similar to a stencil in that once a background is applied with printing paste, the coloured dye is then printed on the part of the fabric that is exposed. The subject covers general concepts in exposure, coating, metallic inks, speciality and textile materials. Another print technology used may be ink-jet. This technology is particularly popular for individualisation. It requires an in-depth knowledge of VDP and material sciences.

Functional printing is a segment of industrial printing. Functional printing is the ability of a printed substance to actually perform a function, such as ink that illuminates or conducts electrical current. This includes printed batteries and even printed antennae. The ability to print electronics is still an industry at its infancy. Functional printing is opening new doors for industrial manufacturers and process engineers charged with ever changing market demands. Ink manufacturers are glad to follow suit. Printed electronics is expected to be a major market in the future. Examples are OLEDs and smart devices. The subject requires a detailed understanding of screen-printing, the prevalent printing technique in this application.

Security printing is an application which involves many different technologies that deal with the printing of items such as banknotes, passports, tamper-evident labels, product authentication tools, stock certificates, postage stamps and identity cards. The main goal of security printing is to prevent forgery, tampering, or counterfeiting. This subject requires an understanding for counterfeit protection, pre-press procedures and speciality printing.

3D Printing is a new application which is still in its infancy. It involves a large number of different technologies used for additive manufacturing. This technology refers to many processes that are employed to synthesize a three-dimensional object. Top computer graphics software will integrate to 3D printing, resulting in friendly modelling tools. It is said to revolutionise many parts of the industry. This subject requires a detailed understanding of the principles, the science and mathematical theory and the ability to apply this to your individual project.
The faculty runs a unique, state-of-the-art learning center equipped with advanced media technology and some of the latest printing machines used in the industry.

This well-equipped centre features a number of laboratories and studios, including digital and commercial printing presses, creative printing set-ups, 3D printers, packaging printing equipment and the latest post press units used for binding and finishing.

Many of the machines have been generously sponsored by our industry partners.
My name is Brittany and I am a Print Media Technologies (PMT) student at Hochschule der Medien – Stuttgart. I am from Southern California and my background is in business, communications, and fashion design. I decided to major in PMT because I believe it is the foundation for all business communications. In a digital age, markets have become saturated with online advertising, but print allows a company to convey its brand with unique aesthetic qualities of font, color, images, and texture.

As a Print Media Technologies student, I examine all components of printing as each plays a vital role in creating a high-quality product! One of those being pre-press. The pre-press process is the phase between the layout creation and final print product. Pre-press includes but is not limited to, color management, imposition, Computer to Plate (CPT), and proofing.

HdM’s pre-media facility offers students the latest digital technologies available to the media industry. This includes various design software packages such as Adobe InDesign, Illustrator, and Photoshop, as well as an industry-standard pre-press workflow software. The access to necessary software programs allows students to follow along with professors in class, receive feedback in real-time and create tangible products all within the classroom environment.

As a result, I have gained valuable insight into the print workflow processes and developed a deeper understanding of the customer journey. As an aspiring business owner, understanding pre-press is imperative as within this process customer expectations are agreed upon with contract proofs. Studying at HdM has afforded me the opportunity to strengthen my skill set in this subject and others within the printing field!
A process to produce, adapt and deliver multi-channel, multi-market communications that maximise brand engagement.

Pre-Media is anything that happens to a piece of artwork to take it from its original state when completed by the creator to a form that is ready for public consumption. This can range from colour correcting a photograph to post production and colour management to preparing a PDF for printing. This includes various pre-press technologies and systems.

Because Pre-Press is a specific type of pre-media, pre-press activities are considered a pre-media process. It involves graphic communications manufacturing processes with emphasis on the variety of pre-media technologies available, and their application.

It includes design, layout, typography, photography, retouching, computer graphic imaging (CGI), impositioning, proofing, raster image processing (RIP), computer to plate (CTP) or computer to press or web-to-print, material selection, colorimetric science, colour management and finally finger printing.

The software used in the HdM are used to create layouts and do retouching or post-production. These Pre-Press Computers also have professional programs for preparing and planning print jobs installed. Students can use these software at any time for all their projects. Apart from software, we also have different devices to measure ink, substrates and print quality.
My name is Mohammad Zeeshan Mehmood, and I come from Brescia, a city situated in the North of Italy – my parents however, come from Pakistan. I lived in the UK for 5 years, where I completed my A-levels, after which I moved to Germany, to study Print Media Technologies at Hochschule der Medien.

So why did I come here? The answer is very simple: This study course is unique in Europe. You are simply not going to find anywhere else, an international study course that integrates Engineering, Business and Design with print and media and has a big focus on the future.

What fascinates me the most, is the rise and potential of variable data printing (VDP). It is one of the key printing technologies that will play a huge role in the future. It allows individualised and personalised products to be printed in one go at full printing speed, without having to stop the machine. Nowadays, with the increase in usage of social media, it is important to connect with customers all around the world by reflecting their personal values and interests. Hence, many areas in the industry are increasingly using this method to produce a variety of products, ranging from postcards and brochures to packaging.

We are very happy to have a digital press here, the HP Indigo. Therefore, I decided to take a closer look by working with our professors in the digital printing department. Here, I am responsible for processing orders from our fellow students via the Web2Print shop and operating the HP Indigo press as well as our inkjet machine to print these orders according to their needs.
Digital Printing is used to print variable data. It is employed for individualized or personalized products. This includes commercial print products, advertising, labels, film or flexible packaging. It involves sending an image directly to the printer using digital files such as PDFs. Digital printing allows on-demand printing, and variable data printing for individualized and personalized products.

Variable data printing is also known as variable information printing or variable imaging. This is a form of digital printing, in which elements such as text, graphics and images are changed from one printed piece to the next, without stopping or slowing down the printing process. Variable Data Printing goes hand in hand with the Internet. Images may be modified or exchanged by using a server based Internet platform.

The global commercial printing market is poised for substantial growth over the next seven years. Individualised printing in advertising, packaging and commercial, will respond to new product needs of business customers.

There is a trend to advanced digital high-speed inkjet technology and complex toner based systems using variable data and allowing the creation of individualised and personalised print. This trend is due to the fact that printed mailings are identified as a more effective way to receive a higher individual customer response. At HdM we feature a HP Indigo 5r digital press.
Меня зовут Анна Колесова и я родом из Карелии, северо-западной части России. Я всегда мечтала путешествовать по миру и быть в международном кругу. Поэтому, сразу после окончания школы я поехала учиться в Финляндию, где у меня появилась возможность поехать на два семестра по обмену в Нидерланды и Чехию.

Курсы обучения Технологии печатных СМИ в Hochschule der Medien предоставляют мне возможность сочетать креативный способ мышления с техническим подходом. Передовые технологии университета и опытные профессора, работающие в HdM, помогают студентам попробовать себя в разных направлениях печати. Сразу с первого семестра меня заинтересовала трафаретная печать, возможности которой позволяют переносить изображения на разные поверхности, такие как ткань, пластик, стекло и различные трехмерные объекты. Это печатный процесс, который может быть использован в различных сферах, включая текстильную промышленность, производство медицинских пробирок и упаковку. Трафаретные печатные машины в HdM также доступны для студентов для их дизайнерских проектов.

Чтобы глубже погрузиться в область печатной электроники, я начал работать вместе с командой исследователей в нашем университете, проводя опыты и выполняя всевозможные задания, связанные с печатой тонких и пластичных батарей и сенсоров. Я убедилась, что печатная электроника будет играть огромную роль в будущем. И я надеюсь, что через пару лет смогу внести вклад в развитие этой области.
Screen Printing is one of the oldest printing processes. It was largely introduced to Western Europe from Asia sometime in the late 18th century. It is a printing technique whereby a mesh is used to transfer ink onto a substrate, except in areas made impermeable to the ink by a blocking stencil.

A blade or squeegee is moved across the screen to fill the open mesh apertures with ink, and a reverse stroke then causes the screen to touch the substrate momentarily along a line of contact. This causes the ink to wet the substrate and be pulled out of the mesh apertures as the screen springs back after the blade has passed.

There are three common types of screen printing presses. The ‘flat-bed’, ‘cylinder’ and ‘rotary’ press. While the public thinks of garments in conjunction with screen printing, the technique is used on tens of thousands of items, including decals, clock and watch faces, balloons, and many other products. The technique has even been adapted for more advanced uses, such as laying down conductors and resistors in multi-layer circuits using thin ceramic layers as the substrate. It also applies to smartphones in which the circuitry is printed in screen to save space, batteries and many more functional features.

Our university features two flatbed screen printing machines, both manual and automatic, as well as a round surface machine. Students often use them for their own projects, mostly shirts and bags. Apart from this, it also features a Lab we use for research on printed electronics.
My name is Baquer. I come from Kurdistan, north of Iraq. My family runs a printing business; one of the reasons that made me study Print Media Technologies.

I have chosen Germany and specifically the Hochschule der Medien because it is one of the few universities that teaches Print Media Technologies in English and features a large technology center with state of the art equipment. The program offers many great opportunities for students who are interested in graphic communication.

At the moment the most fascinating technology I am working with is rotogravure. This technology provides a high print quality standard which is required for décor and packaging printing. The university features a rather large Bobst Rotomec MW 60 web press. We also have the technological environment to engrave gravure cylinders on site. This is unique for an educational university.

Studying in Germany is worth every minute and above all good fun. The university offers many interesting projects which involve the industry. We go on many excursions and have the opportunity to learn from the industry as well.
Rotogravure is used for large volume printing applications. It is used in packaging and décor printing, anything which needs a continuous design. A typical application is packaging of gummy bears. Apart from that, every big name catalogue, many famous newspapers and high quality packages are produced in gravure printing.

Large copper plated steel cylinders are engraved with a given design. The cylinder is partially immersed in the ink tray, filling the recessed cells.

As the cylinder rotates, it draws excess ink onto its surface and into the cells. Next, the substrate gets sandwiched between the impression roller and the gravure cylinder: this is where the ink gets transferred from the recessed cells to the web.

Our rotogravure machine is the Rotomec MW 60 from Bobst, Enulec and Bsteltromat. At our university, we prepare the printing cylinders with diamond and laser engraving.
I am Chun-Wei Chen. I go by William as a nickname. I am a student with a printing background from Taiwan. My family business, based in cities in Taiwan and China, dedicates in UV-offset packaging-printing for world-class customers for the past 50 years. We specialise in the fields of cosmetic packages, perfume packages, medicine packages, beverage packages, and other high quality packages. Our complete line of workflow starts from buying papers and substrates, to designing and finalizing, plate-making, printing, post production, until shipping.

As a student, I made a decision to come to Germany in the purpose of learning printing technologies from the best printing country. I started my studies with Professor Volker Jansen's Print Media Technologies in Hochschule der Medien Stuttgart. In this programme things are taken precisely, as we learn about various sorts of printing methods such as Offset, Flexography, Gravure, Digital printing, 3D printing and screen printing. In particular, offset printing draws my best attention as I have a business related to it. In our commercial printing department in the HdM, we use an automated offset press (Heidelberg Speedmaster CD 74) employing a digitised workflow system; we also develop the printing plates on site. This printing process is generally used for high quality print jobs, and additionally used for printing on cardboard for packaging. Often, we are allowed to operate the machines for our projects with professional supervisors with us.

Personally, I really enjoy working alongside my international colleagues and value this experience here in the HdM a lot!
Quite a repelling relationship!

Lithography is a method of printing originally based on the immiscibility of oil and water. In modern lithography, the image is made of a polymer coating applied to a flexible plastic or metal plate. The image is printed offset, by transferring the image onto a flexible sheet or rubber blanket which is then printed to the substrate. The image on the plate emulsion is created by direct laser imaging in a CTP device known as a platesetter.

The positive image on the plate is the emulsion that remains after imaging. The plate is affixed to a cylinder on a printing press. Dampening rollers apply water, which covers the blank portions of the plate but, simultaneously being repelled by the emulsion of the image area.

Hydrophobic ink, which is repelled by the water and only adheres to the emulsion of the image area, is then applied by the inking rollers. The plate rolls against a cylinder covered with a rubber blanket, which picks up the ink and transfers it to the paper with uniform pressure. The paper passes between the blanket cylinder and a counter-pressure or impression cylinder and the image is transferred to the paper.

The offset printing process is commonly used for cardboard packaging like cereal boxes. It’s also used for magazines and other high volume printing products. This flyer was printed with our Speedmaster CD 74 from Heidelberg. The used printing plates were also produced on location.
I am Bhargav Thesiya from India. I chose Print Media Technologies because the packaging printing industry is rapidly growing, not only in India, but also in the whole world. This study program is perfect for me since it is taught in English and it is international. It has different course modules which include digital printing, flexography, gravure printing and many more.

Above all, flexography is the course in which I am particularly interested. Moreover, flexographic printing is considered as one of the biggest markets in the packaging industry. It is employed for printing on flexible substrates, paper and cardboard with the most common usage being in packaging.

Talking about choosing the right country for studying, the first choice for me was always Germany because of its geographical location and culture. It is located in the heart of Europe which makes this country special. The people, language, and strong traditions are the reasons why German culture is so interesting for me. As a matter of fact, Germany is known as the country of poets and thinkers back home. The German culture has been influenced and shaped throughout Germany’s rich history, since the country has had a key role in the history of Europe.
Flexography is a printing process which utilises a flexible relief plate. This may be a photopolymer or rubber plate. The technology is used for printing non-porous, flexible substrates, which are required for various types of food packaging. An example is the household sugar package.

A flexographic print is made by creating a positively mirrored master of the required image as a 3D relief in a polymer material. The image areas are raised above the non image areas. The ink is transferred from the ink roll which is partially immersed in the ink tank.

Then it transfers to the anilox or ceramic roll whose texture holds a specific amount of ink since it is covered with millions of small cells holding the exact same volume that enable it to meter ink to the printing plate in a uniform thickness evenly and quickly. The required amount of ink is transferred by using a chambered doctor blade system which removes excess ink from the anilox roller before inking the printing plate.

The substrate, usually a web, is finally sandwiched between the plate and the impression cylinder to transfer the image. The web is fed through a dryer, which allows the inks to dry.

The Flexopress 6S-8 from Fischer & Krecke belongs to the DFTA (German Flexographic Technical Association). They are using it for research and ink testing, for example.
BABAR

I am Babar Naeves. I come from Karachi, Pakistan, which is a metropolitan and one of the densely populated cities in the world. I am 25 and this is my second bachelor program, the first one was in Business Studies. What made me come for my second bachelors is the challenge of a completely different environment, ethics, norms and of course to learn the science behind good printing.

Post press is equally as important as pre-press and printing itself. Finishing is done via various technologies. The Post Press Department in our university features state of the art equipment for folding, cutting, binding and adding special effects like embossing or laser cutting parts.

For example, students complete their printed projects on a recently installed perfect binder from Muller Martini (Vareo), or they may use MBO folding equipment. A new stitching machine Univers, which is dedicated to the binding of digital print products, has recently been installed. Why we need post press and finishing? Because it adds extra value to the final product, which makes it more appealing to the customers.

Since Germany is in the center of Europe, it’s easy for me to travel and meet new people, which is something I love to do. My favorite part about this program are the excursions which shows us first hand where the printing industry has gone so far. My future goal is to apply my knowledge and experience from this bachelor into my family’s offset printing business. It was founded more than 50 years ago where we print packaging and commercial materials for multinationals like Glaxo Smith Klein, Toyota etc.

Post press is equally as important as pre-press and printing itself. Finishing is done via various technologies. The Post Press Department in our university features state of the art equipment for folding, cutting, binding and adding special effects like embossing or laser cutting parts.
Post-Press technologies include anything which is applied after printing, for example binding and finishing.

Binding involves folding and fastening of individual sheets together, while finishing involves additional decorative actions, such as die-stamping, embossing or laser cutting. Lamination is another possibility. It is available in both gloss and matt finish. The printed sheets are then folded and glued so we get the final look of the printed product.

Although binding is a post-press function, binding considerations need to be dealt with in the pre-press phase of any print job. There are many different ways to bind press sheets, and certain binding allowances need to be made, which vary by binding type. The correct imposition needs to be determined at this time, as well. Imposition issues are usually the purview of the person responsible for the assembly of all the page elements.

Post-press technologies involve a combination of different processes. These include: guillotine and rotary cutting, specialty folding, magazine and paperback production, case binding, stationery and loose-leaf binding, saddle stitching, thread binding and thread sealing, embossing and debossing, hot foil stamping, make-up and securing, Laser die cutting and engraving and many more processes.

Wir haben eine Auswahl verschiedener Maschinen in unserem 3D Labor, die jeder nutzen kann und wir arbeiten daran, unsere Flotte stetig zu erweitern um zusammen mit den Professoren neue und interessante Projekte zu beginnen.

Hi, I am Arne, a printer from the north of Germany. After finishing my Abitur, I worked in the industry for a little while. My curiosity brought me here to Stuttgart, to learn more about the “colorful” industry I’ve been working in. Here I discovered the whole breadth of print.

What I especially like about our course, is the possibility to bring thoughts and ideas from the screen into real life. This is also the reason, why at the moment I am spending most of my time in our 3D printing lab in the HdM. Here I can play around with the possibilities of “additive manufacturing” and transform data into physical objects.

Today things are possible that could not even have been imagined twenty years ago. Just imagine now, we had a technology that would create machine parts, prototypes or even prosthetics for humans locally and only by the push of a button. Sounds like Star Trek’s Replicators, right? The technology is already here, in its infancy. 3D printing, or more accurately Additive Manufacturing, is part of what is covered in our course, and it is very popular amongst our students - even students from other courses.

We have an array of different machines in our 3D lab that can be used, and we continue to build up our fleet of printers for new and interesting projects for students and professors to embark on together.
Creation close at hand!

We are about to witness the next industrial revolution. 3D printing, also known as additive manufacturing (AM), refers to processes used to synthesise a three-dimensional object. More computer graphics and CAD software will support direct printing from within the software, consequently making printing easier for the end user. Top computer graphics software will integrate to 3D printing. 3D printing is said to revolutionise many parts of the industry.

3D Printers are melting filament, most commonly PLA, in their print heads. Then the liquid material is pushed through a nozzle, onto the printing bed. There it is immediately cooling down enough to be hardened again. Through printing layer onto layer and therefore building up the model, the print is finished. Nowadays there are different options available like using different filaments for one model or building electronics into the 3D printed model.

The HdM has its own initiative for 3D print. Any student can use the 3D printers at the university and print their own models. In the industry, additive manufacturing is used in many different fields, ranging from printing car parts or decorative articles to printing backup devices for rockets.
Applicants are expected to be interested in print media, therefore a personal statement is highly valued. You can find all requirements for the enrolment on our Webpage.

Three of our Print Media Technologies students, Lara Philipp, Callum Bruce and Brittany Wiltz, with help of our academic staff and our dean, designed and produced this brochure. Each brochure was printed, bound and finished using equipment and machines in our technology centre at Hochschule der Medien.

All of the photographs that have been used are from Print Media Technologies Students: Lara Philipp, Callum Bruce, Moataz Khalil Shazli and Hunter Bliss.

Hochschule der Medien
Nobelstraße 10
70569 Stuttgart
Germany
www.hdm-stuttgart.de

Admissions Officer
Ms Laura Ryhänen
admissions@hdm-stuttgart.de

Academic Dean
Professor Volker Jansen Ph. D.
jansen@hdm-stuttgart.de

Webpage
www.hdm-stuttgart.de/pmt
Facebook
Print Media Technologies
Instagram
pmt.hdm
Check out our website to get more information on Print Media Technologies and additionally follow us on social media to get insights on our course of studies.

Website
www.hdm-stuttgart.de/pmt

Youtube
PMT Stuttgart

Facebook
Print Media Technologies

Instagram
pmt.hdm

Hochschule der Medien
Nobelstraße 10
70569 Stuttgart
Germany

Admissions Officer
Laura Ryhänen
admissions@hdm-stuttgart.de

Academic Dean
Professor Volker Jansen Ph. D.
jansen@hdm-stuttgart.de