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Fig. 1. In SPH-based fluid animation, the continuous fluid domain is sampled with particles. This discretization procedure induces errors resulting in a noisy
density field (left part of the particle rendering shown on the left). We propose a correction method to reduce this noise (right part of the particle rendering).
The observations are quantified using a suitable norm (center). A production rendering is shown on the right.

We present a novel technique to correct errors introduced by the discretiza-

tion of a fluid bodywhen animating it with smoothed particle hydrodynamics

(SPH). Our approach is based on the Shepard correction, which reduces the

interpolation errors from irregularly spaced data. With Shepard correction,

the smoothing kernel function is normalized using the weighted sum of

the kernel function values in the neighborhood. To compute the correction

factor, densities of neighboring particles are needed, which themselves are

computed with the uncorrected kernel. This results in an inconsistent for-

mulation and an error-prone correction of the kernel. As a consequence,

the density computation may be inaccurate, thus the pressure forces are

erroneous and may cause instabilities in the simulation process. We present a

consistent formulation by using the corrected densities to compute the exact

kernel correction factor and, thereby, increase the accuracy of the simulation.

Employing our method, a smooth density distribution is achieved, i.e., the

noise in the density field is reduced by orders of magnitude. To show that

our method is independent of the SPH variant, we evaluate our technique

on weakly compressible SPH and on divergence-free SPH. Incorporating

the corrected density into the correction process, the problem cannot be

stated explicitly anymore. We propose an efficient and easy-to-implement
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algorithm to solve the implicit problem by applying the power method. Ad-

ditionally, we demonstrate how our model can be applied to improve the

density distribution on rigid bodies when using a well-known rigid-fluid

coupling approach.
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1 INTRODUCTION
Smoothed particle hydrodynamics (SPH) has evolved into a well-

established method for computer animation. It is a Lagrangian

technique to animate fluid flow with free surfaces and complex

interactions. The fluid quantities are evaluated at given particle

positions by using neighboring particles only.

The demand for visual quality and degree of realism is constantly

increasing for computer-generated animations. Higher quality is

not only achieved by increasing the particle numbers but also by

improving the accuracy of the underlying models to simulate the

physical behavior as best as possible. Due to the Lagrangian nature

of SPH, the incompressibility constraint is typically violated as the

fluid density is a function of time. This leads to oscillations of the

fluid volume and affects the simulation quality [Ihmsen et al. 2014b].

Modern SPH variants overcome this issue and enforce the incom-

pressibility constraint by adjusting the pressure forces accordingly.

The fluid quantities, such as the density, are not only a function

of time but also of space. Due to the spatial discretization of the
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Fig. 2. Snapshot of the fluid pillar scenario consisting of 60k particles simu-
lated with WCSPH. From left to right: simulation without kernel correction,
with classical Shepard correction, and with our method. Particles are colored
with respect to density. We sliced out the front left quarter of the tower to
show the inside of the fluid. With our method, we obtain a significantly
smoother density field compared to simulations conducted without kernel
correction or with classical Shepard correction.

fluid body, inevitable errors are introduced as well. The Shepard

correction [Shepard 1968] (also referred to as Shepard kernel) is

often used to reduce this kind of error when animating the fluid

with SPH. To this end, the smoothing kernel is normalized when

computing the fluid quantities. This approach has one drawback as

the correction factors depend on the volume represented per parti-

cle. Since the particles’ mass is constant and the density changes

over time and space, the represented volume changes and, more im-

portantly, depends on the density itself. Shepard correction employs

the uncorrected particle volumes to scale the kernel and, therefore,

results in an inconsistent and error-prone correction scheme.

We resolve this issue and present a consistent method to cor-

rect the kernel. We propose an iterative technique that includes

the corrected densities to compute the Shepard kernel. As Figure 2

demonstrates, we achieve a smoother density distribution throug-

hout the fluid. The main technical contributions of this paper are:

• A consistent and stable method to compute the kernel cor-

rection.

• A linear formulation of the problem solved iteratively by

using the power method. Furthermore, we prove that our

algorithm is unconditionally stable.

• A kernel gradient correction scheme that accounts for discre-

tization errors in the kernel gradient approximation.

• To model rigid boundaries, we use the rigid-fluid coupling

model of Akinci et al. [2012]. We adapt this model and adjust

the local number densities with corrected kernels.

Employing the power method is very efficient, e.g., for the foun-

tain scenario (Figure 1), we need on average only 2.1 iterations to

converge. Even in highly dynamic scenes with very large time steps,

our solver needs on average less than five iterations to converge.

Therefore, the introduced overhead can be neglected. We evaluate

our model on weakly compressible SPH (WCSPH) [Becker and Tes-

chner 2007] and divergence-free SPH (DFSPH) [Bender and Koschier

2017]. With a suitable norm, we show that the density distribution

is smoother with our method compared to Shepard correction and

a simulation with uncorrected kernel.

2 PREVIOUS WORK
Since Desbrun and Gascuel [1996] introduced SPH to the field of

computer graphics, many extensions to its original formulation have

been presented. Several authors examine the density preservation

issue, either based on the equation of state [Becker and Teschner

2007; Bender and Koschier 2017; Solenthaler and Pajarola 2009]

or pressure projection schemes [Cummins and Rudman 1999; El-

lero et al. 2007; Ihmsen et al. 2014a]. Schechter and Bridson [2012]

address the sampling deficiency near solid and air boundaries by

adding a narrow layer of ghost particles. We propose a method that

reduces discretization errors all over the fluid body.

Shepard [1968] presents an operational solution to reduce dis-

cretization errors and to produce a continuous surface from the

interpolation of irregularly spaced data using weighted averages.

This kernel normalization, often referred to as Shepard kernel, is

applied by many authors to accurately preserve the discontinuity at

interfaces (e.g., by Johnson and Beissel [1996] or Colagrossi [2001]),

such as liquid-liquid or liquid-air interfaces. Grenier et al. [2009]

additionally use a gradient normalization based on the Shepard ker-

nel. The Shepard kernel is also referred to zeroth-order correction

(or constant completeness) [Belytschko et al. 1998], i.e., constant

functions are exactly represented by the approximation. We propose

a method based on the Shepard kernel and obtain constant complete-

ness but also resolve inconsistencies of the original formulation.

When simulating a fluid, methods that satisfy higher-order com-

pleteness conditions are often applied (a completeness condition to

the order k is satisfied if any polynomial function to the degree k is

represented exactly) [Belytschko et al. 1998]. An overview of com-

pleteness methods for SPH can be found in the work of Belytschko

et al. [1998] and Vaughan et al. [2008]. They examine different

approximation techniques that restore various levels of complete-

ness. Krongauz and Belytschko [1996] achieve linear (and higher-

level) completeness by using a moving least squares approximation.

This approach is not a kernel correction in a classical sense but

computes the approximation directly, achieving a specified level

of completeness. Liu et al. [1997] use the moving least squares

interpolation scheme to correct the kernel function, the so-called

moving least-square reproducing kernel. Similar to the approach

by Krongauz and Belytschko, a polynomial of arbitrary degree is

exactly represented. The moving least-square reproducing kernel

approach is applicable to any meshless approximation for Galerkin

procedures, in particular for SPH.

Johnson and Beissel [1996] present an algorithm that uses normali-

zed smoothing kernel functions for SPH. They adjust the smoothing

kernel so that constant normal strain rates are represented exactly.

Even though their approach does not ensure linear completeness,

their results show improved accuracy, especially at free boundaries.

Bonet and Lok [1999] and Bonet et al. [2004] present a variational

formulation of SPH that ensures linear completeness and works for
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both fluids and solids. Their approach reduces density noise remark-

ably, as discussed by Vaughan et al. [2008]. Similar to our model,

higher-order kernel corrections reduce the noise in the density field.

Nonetheless, the mentioned methods neglected that the volume

represented by a particle changes over space and time. Since the

mass is usually set to a constant value and the density changes, the

volume has to change and, therefore, needs to be included in the

kernel correction. We resolve this issue and propose an approach

that accounts for this fact.

Monaghan [1988] proposes a skew-symmetric form of the kernel

gradient. This symmetrization results in constant completeness of

the gradient [Belytschko et al. 1998]. Morris [1996] proposes the

same formulation to compute the velocity changes due to pressure

forces. This formulation is stable and independent of background

pressure. Note that it does not conserve momentum exactly [Mon-

aghan 1992]. Therefore, alternative variants are often used (see,

e.g., Morris et al. [1997] or Monaghan [1992]). Randles and Liber-

sky [1996] propose a kernel gradient correction scheme to model

generalized boundary conditions. It can be understood as a genera-

lization of the method by Johnson and Beissel [1996] and ensures

that the gradient of any linear tensor field is approximated exactly.

Bonet et al. [2004] also use modified kernel gradients and achieve

linear completeness. Nonetheless, these modifications lead to the

problem that the gradient is no longer antisymmetric and, hence,

linear and angular momentum are not necessarily preserved.

All the mentioned methods alter the gradient of the smoothing

kernel itself to obtain constant completeness. We propose a method

for constant completeness that does not alter the kernel gradient

but implicitly adds a ghost particle to compensate the discretization

errors. A similar idea is used by Ganzenmüller [2015]. Instead of

adding an integration point (particle) to correct the kernel gradient,

he computes a correction force to suppress zero-energy modes (the

deformation of an element without change of its potential energy).

This is similar to our concept in the sense that we virtually place

a particle and use the resulting force that would occur. However,

our approach has a different goal: While Ganzenmüller suppresses

zero-energy modes, we ensure that the kernel gradient sums up to

zero. Note that our method does not replace the mentioned kernel

and gradient correction schemes but can be combined with them.

3 BACKGROUND
Before describing our method in detail, it is necessary to recapitu-

late the fundamentals of SPH and the classical Shepard correction.

Additionally, we outline the SPH variants into which we integrated

our method to evaluate our technique, namely WCSPH and DFSPH.

3.1 Basics of SPH
Themotion of a fluid can be described by the equation of momentum

of the Navier-Stokes equations:

Dv
Dt
=

Fb

m
−

1

ρ
∇p + ν∇2v, (1)

where v denotes the fluid velocity, ρ its density, p the pressure, ν

the kinematic viscosity, and Fb the body forces (e.g., gravity g). SPH
evaluates the fluid properties A(x(t)) at specific locations x(t) at
time t (for simplicity, we will skip the variable t in the following

unless it is explicitly needed). The quantities A(x) are smoothed

over the domain Ω(x,h) = {y ; ∥x − y∥ ≤ h}, which is a compact

area around position x. To this end, a smoothing kernel function

W (r ,h) with compact support h is employed. The fluid quantities

are then approximated via

A(x) =
∫
Ω(x,h)

A(x′)W (∥x − x′∥,h)dV (x′), (2)

where dV (x′) is the differential volume element at x′. Besides the
compact support, other requirements are demanded onW to be

suitable as a kernel function. An important one is thatW must be

normalized [Monaghan 1988], i.e.,∫
Ω(x,h)

W (∥x − x′∥,h)dV (x′) = 1. (3)

This ensures that the constant function A(x) = 1 is exactly repro-

duced. The gradient ∇A of the fluid quantity A is evaluated via

∇A(x) =
∫
Ω(x,h)

A(x′)∇W (∥x − x′∥,h)dV (x′). (4)

Equation 4 lets us specify another desired property of the smoothing

kernelW : To exactly reproduce the derivative of a constant function,

such as A(x) = 1, the integral of the kernelW over the smoothing

domain Ω must be zero:

0 = ∇1 =

∫
Ω(x,h)

∇W (∥x − x′∥,h)dV (x′). (5)

To animate the fluid, the equation of momentum (Equation 1)

needs to be discretized over space and time. To this end, the fluid

domain is sampled with n particles at discrete positions xi with
i ∈ N = {1, ...,n} and the fluid quantities A(xi ) are evaluated at xi .
Subsequently, particle accelerations are computed by Equation 1.

To evaluate the fluid quantities with SPH, the formulation in Equa-

tion 2 is discretized, approximating the integral. Therefore, a specific

volume is linked with each particle i , obtaining

A(xi ) =
∑
j ∈Ni

m(xj )
ρ(xj )

A(xj )W (∥xi − xj ∥,h), (6)

where

m(xj )
ρ(xj )

describes the volume represented by particle j and

Ni ⊂ N the set of the discrete evaluation positions of the smoo-

thing domain Ω(xi ,h). For simplicity, we will write Ai = A(xi ) and
Wi j =W (∥xi − xj ∥,h) in the following. Similar to the computation

of attribute Ai , the integral in Equation 4 needs to be approxima-

ted when computing the gradient of the quantity of the fluid ∇Ai .
Equation 4 then reads as

∇Ai =
∑
j ∈Ni

mj

ρ j
Aj∇Wi j . (7)

This formulation has some drawbacks, especially when computing

the pressure gradient ∇pi to determine the pressure forces. Modern

SPH solvers use an antisymmetric reformulation of ∇pi to conserve
momentum [Morris et al. 1997]. To this end, Monaghan [2005] re-

writes the pressure gradient via

∇p

ρ
= ∇

(
p

ρ

)
+

p

ρ2
∇ρ. (8)
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(a) (b) (c) (d)

Fig. 3. Illustration of the fluid body in the neighborhood of particle i . In the continuous case, the kernel normalization property is satisfied (a), whereas this
property gets lost in the discretization process (b). Classical Shepard correction (c) addresses this problem by adjusting the volume of particle i . To compute
the correction factor the volumes of the neighboring particles are needed. However, classical Shepard correction neglects that they undergo a correction
(indicated by the green circles in (c)) and uses the uncorrected volumes (black circles) to compute the correction factors. Consequently, the correction factor
and, therefore, the volume is calculated inconsistently. We propose a consistent formulation and compute the correction factors simultaneously (d). This
results in a smoother density distribution and, hence, more uniform volumes.

This results in an antisymmetric pressure gradient formulation and

exactly conserves linear and angular momentum [Monaghan 2005;

Morris et al. 1997]. The acceleration of particle i induced through

pressure can then be computed via

1

ρi
∇pi =

∑
j ∈Ni

mj

(
pi

ρ2

i
+

pj

ρ2

j

)
∇Wi j . (9)

To obtain the pressure itself, a pressure Poisson equation or an

equation of state (EOS) can be employed. WCSPH uses the EOS to

compute the pressure:

pi = k
ρ0

γ

((
ρi
ρ0

)γ
− 1

)
. (10)

Commonly, γ = 7 is used and, to enforce incompressibility, the stiff-

ness factor needs to be set to k = c2

s , where cs is the speed of sound.

In practice, k is a stiffness constant that scales the pressure [Ihm-

sen et al. 2014b]. DFSPH employs the EOS to derive the stiffness

constants for the constant-density and the divergence-free solver. It

uses the linear form of Equation 10 (i.e., γ = 1).

3.2 Shepard Correction
The Shepard [1968] correction of the smoothing kernelW addresses

errors introduced by the SPH discretization process due to irregu-

larly distributed particles inside the fluid domain. Especially near

open boundaries (such as fluid-air interfaces), the computation of

the fluid quantity Ai is error-prone due to the lack of neighboring

particles. The following correction factor cshi is computed to account

for this fact:

cshi =
1∑

k ∈Ni
mk
ρk

Wik
. (11)

The factor cshi can then be used to correct the smoothing kernelWi j
via

W̃i j = c
sh

i Wi j =
Wi j∑

k ∈Ni
mk
ρk

Wik
. (12)

This correction shall ensure that the property described in Equa-

tion 3 still holds for the discrete case, i.e., the kernel is normalized

(note that this only holds if uncorrected densities ρk are considered).

The fluid attributes are then computed with the corrected kernel

Ãi =
∑
j ∈Ni

mj
ρ j AjW̃i j . The classical Shepard correction is illustrated

in Figure 3 (c).

4 CORRECTED CORRECTION
In this section, we present our novel approach to compute consis-

tent correction factors ci by considering the corrected densities. As

pointed out earlier, the densities are fluid quantities themselves and

need to undergo the correction step as well. They are computed

using Equation 6, i.e., ρi =
∑
j ∈Ni mjWi j . In essence, this means that

with the classical Shepard correction, a different smoothing kernel

function (the kernelW ) is used to compute the correction factors

than for the computation of the fluid quantities (the kernel W̃ ). This

is an inconsistent use of kernel functions and introduces new errors.

Instead of smoothing the density field, the Shepard correction may

distort it even more compared to simulating without a kernel cor-

rection. We resolve this inconsistency and use the Shepard kernel

W̃ to compute the correction factors ci .

4.1 Kernel Correction
It is worth to consider another view on the problem: On account of

the fluid discretization, the particle i represents a certain amount

Vi =
mi
ρi of the total fluid volume V , as illustrated in Figure 3 (b).

Using the classical Shepard correction, the density ρi and, therefore,
the volume element Vi is corrected (Figure 3 (c)). This correction

process neglects that the volume elements Vj of the neighboring
particles j change as well. We account for this fact and include the

corrected neighboring volume elements V c

j =
mj
c j ρ j (Figure 3 (d)).

Equation 11 then becomes

ci =
1∑

j ∈Ni

mj∑
k∈Nj mk c jWjk

Wi j
=

1∑
j ∈Ni

mj
c j ρ jWi j

. (13)

We cannot compute ci explicitly anymore as the correction factors

depend on each other. This problem can, however, be solved itera-

tively, e.g., using fixed-point iteration. By c = (c1, ..., cn ) we denote
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the vector of the correction factors ci , where n is the total number

of particles. Let F (c) = (f1(c), ..., fn (c)) be a vector of functions fi
defined as

fi (c) =
1∑

j ∈Ni

mj
c j ρ jWi j

. (14)

To solve Equation 13 we search for a c that satisfies F (c) = c . To this
end, we need to repeat the following steps:

(1) For all particles i , set c0 = (1, ..., 1).

(2) Repeat until converged: cr+1 = F (cr ).

Note that, if we perform only one iteration in step (2), we end up

with the classic Shepard correction. Therefore, our method could

be interpreted as a generalization of the Shepard correction.

Employing a fixed-point iteration to solve Equation 13 has some

drawbacks though. First, convergence of the method is not ensured

and, second, we cannot guarantee temporal coherence of the solu-

tion. This induces discontinuities in the density field and, therefore,

causes instabilities in the simulation. To reduce the likelihood of

incoherent solutions, we can initialize c with the previous solution,

i.e., c0(t +∆t) = c(t), but we can still end up with instabilities, as we

may have obtained a repulsive fixed point. Besides the instability is-

sues, the speed of convergence is typically very slow for fixed-point

iterations.

We account for these issues and present an unconditionally stable

and fast converging algorithm employing the power method. To

this end, we use an equivalent reformulation of this problem. We

substitute ci with c̃i =
1

ci :

c̃i =
1

ci
=

∑
j ∈Ni

c̃ j
mj

ρ j
Wi j︸  ︷︷  ︸
ai j

. (15)

If we use Equation 15 instead of Equation 14, we obtain a fixed-point

problemAc̃ = c̃ with the linear functionA. Solving this is equivalent
to finding an eigenvector c̃ to the eigenvalue λ = 1 of the matrix

A = (ai j )(i, j)∈N×N . For this purpose, we examine A in detail. First,

we need to ensure that λ = 1 exists. Fortunately, the column sum of

A equals one, i.e.,

∑
i ∈N

mj
ρ j Wi j = 1 and the entries ai j of A satisfy

the condition 0 ≤ ai j ≤ 1. This implies that A is a column (or left)

stochastic matrix and we can conclude that the eigenvalue λ = 1

exists. In addition, for all other eigenvalues λ, it holds true that

|λ | < 1 (see Lemma A.3). With these insights into matrix A, we are
able to use the power method [Mises and Pollaczek-Geiringer 1929]

to find a solution vector c̃ by considering the recurrence relation

c̃r+1 =
Ac̃r

∥Ac̃r ∥
. (16)

Applying this method, we can ensure that our algorithm con-

verges and returns a solution for Ac̃ = c̃ . Furthermore, we can

guarantee a unique solution if we have one connected fluid body.

By the term connected fluid body we understand that every particle

is a direct or indirect neighbor of any other particle of the fluid (see

Definition A.1). For more details and a mathematical derivation, we

refer the reader to Appendix A. If splashes occur, we do not have

a connected fluid body. For a non-fully connected fluid body, the

Algorithm 1 Compute c̃ using the power method

1: for particle i do
2: Neighborhood search

3: If first step then c̃0

i = 1

4: ρi =
∑
j ∈Ni mjWi j

5: end for
6: do
7: Compute ∥Ac̃r ∥
8: for particle i do
9: c̃r+1

i = 1

∥Ac̃r ∥
∑
j ∈Ni c̃

r
j ai j

10: end for
11: while 1

n
∑
i ∈N |c̃r+1

i − c̃ri | > ε1 or maxi ∈N
{
|c̃r+1

i − c̃ri |
}
> ε2

matrixA is not irreducible and, hence, λ = 1 is not necessarily a sim-

ple eigenvalue. However, in our experiments, we obtained temporal

coherence when initializing the algorithm with c̃0(t + ∆t) = c̃(t).
Algorithm 1 describes the outline of our method. At least one

iteration is always performed. The algorithm stops if the average

change rate of c̃i is smaller or equal than ε1 and the maximum

rate is smaller than ε2. Since only direct neighbors are needed to

compute c̃r+1

i , the problem can be solved efficiently in a matrix-free

way. Having computed the kernel correction factors, we correct the

kernel via

W̃i j =
Wi j

c̃i
(17)

and then perform the SPH simulation step.

4.2 Kernel Gradient Correction
To determine the fluid quantities, the kernel gradient ∇Wi j is needed

as well. Since the kernel corrections (Section 4.1) alter the kernel

function, the computation of the gradient ∇Wi j has to be adjusted.

To obtain a consistent formulation for the kernel gradient, we take

Equation 17 into account and compute the gradient ∇W̃i j via

∇W̃i j =∇

(
Wi j

c̃i

)
=

∇Wi j −Wi j
∇c̃i
c̃i

c̃i
, (18)

where ∇c̃i is obtained from Equation 7 but considering the corrected

densities:

∇c̃i =
∑
j ∈Ni

mj
1

c̃ j
ρ j

∇Wi j . (19)

Even though Equation 18 provides a consistent formulation of the

gradient and, hence, increases the accuracy, it does not necessarily

satisfy the reproducing condition stated in Equation 5. In other

words, to exactly reproduce the gradient of constant functions we

need to ensure that

∑
j ∈Ni

mj
ci ρ j ∇W̃i j = 0. In general, this condition

is violated. By

ξ si =
∑
j ∈Ni

mj

ciρ j
∇W̃i j , (20)

we denote the error of the kernel gradient sum. If we subtract ξ si
from the right-hand side of Equation 20, it sums up to zero: 0 =∑
j ∈Ni

mj
ci ρ j ∇W̃i j − ξ si . One element in the sum corresponds to

exactly one neighboring particle. We think of ξ si as an additional
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addend to the sum, considering the value ξ si to correspond to a

ghost particle si at an unknown location xsi . In other words, we

add a ghost particle si into the neighborhood of particle i to correct

the error. Therefore, ξ si can be expressed in the form

ξ si =
msi
csi ρsi

∇W̃isi . (21)

To place the ghost particle si we need to know its location xsi . To
this end, we define the function κ i (x) =

m(x)
c(x)ρ(x)∇W̃ (∥xi − x∥,h).

The location xsi is then given by

xsi = κ
−1

i

(
−ξ si

)
. (22)

Knowing the position xsi of our ghost particle, we can compute

the fluid quantity Asi using standard SPH interpolation as stated in

Equation 6 and correct the kernel gradient sum.

Although this would provide an exact solution, computing κ−1

i is

computationally expensive. Furthermore, it depends on the choice

of kernel function, is not always well defined, or may even not exist
1
.

Fortunately, we can compute Asi without explicit knowledge of xsi .
As mentioned, we aim to reproduce constant functions, which can

be ensured if we approximate Asi with Asi = Ai . The corrected

gradient ∇Ai of the fluid quantity A is then computed as:

∇Ai =
∑
j ∈Ni

mj

c jρ j
Aj∇W̃i j −Aiξ si . (23)

When animating the fluid usingWCSPH,we use an antisymmetric

kernel as stated in Equation 9. In this case, ξ si becomes

ξ si =
∑
j ∈Ni

mj

(
1

ρ2

j
+

1

ρ2

i

)
∇W̃i j , (24)

and the gradient of the fluid quantityA is then adjusted accordingly.

4.3 Rigid Boundary Correction
We employ the approach of Akinci et al. [2012] to model rigid

boundary objects. With this model, the surface of the rigid object is

sampled with particles that interact with the fluid. These boundary

particles contribute to the density computation of the fluid particles.

The density ρi of particle i then reads:

ρi =
∑
j ∈N f

i

mjW̃i j +
∑

k ∈N b
i

Ψbk (ρ0)Wik , (25)

where Ψbk (ρ0) is the so-called local number density, N
f
i is the set of

fluid neighbors of particle i , and Nb
i the set of boundary neighbors.

In essence, Ψbk (ρ0) is a ‘pseudo mass’ that is computed based on

the configuration of the neighborhood particles:

Ψbk (ρ0) =
ρ0∑

j ∈N b
k
Wbk j

. (26)

To maintain a consistent approach, we include the boundary parti-

cles into the computation of the kernel correction factors, i.e., we

determine correction factors for rigid bodies as well and the kernel

Wik in Equations 25 and 26 is replaced by W̃ik .

1
For example, when using the cubic spline kernel, ∇W is only injective on the interval

[0, h/3]. In addition, it cannot be ensured that ξ si is in the value range of function κ i .

No Correction Our

 1010

  990

Fig. 4. Calculating the density on rigid boundaries results in a noisy density
field (left). In contrast, a smooth density distribution is achieved (right) by
applying our kernel correction to the rigid boundary objects as a preproces-
sing step to the simulation correcting the volumes accordingly.

This boundary model has the advantage that only one layer of

boundary particles is needed, and the local number densities are com-

puted only with the boundary neighbors, as stated in Equation 26.

However, the discretization of the smoothing kernel function tends

to be error prone, especially at free surfaces where only few neigh-

boring particles are available. Therefore, we adjust the computation

of Ψbk (ρ0) and apply our approach to calculate correction factors,

i.e., we alter Equation 26 accordingly using corrected kernels. This is

done as a preprocessing step to the simulation and, hence, produces

overhead only in the initialization but not during simulation. For our

approach, we need to compute the density of a boundary particle bi ,

via ρbi =
∑
j ∈N b

i
Ψbj (ρ0)W̃bi j . Without our kernel correction, we

obtain a noisy density field, as the example in Figure 4 (left) indi-

cates. When adjusting the boundary volumes and computing the

densities by employing the corrected kernel, we achieve a smooth

density distribution over the complete rigid body (Figure 4, right)

with barely any deviations from the reference density ρ0.

5 IMPLEMENTATION
We implemented our approach in the open-source framework SPlisH-
SPlasH, which is also used by several other authors, e.g., Bender

and Koschier [2017], Bender et al. [2018], or Weiler et al. [2018].

For all simulations, the cubic spline kernel function [Monaghan

2005] is employed. In most examples, we exclude surface tension,

but if included we use a modification of the IIF model [Becker and

Teschner 2007] as presented by Huber et al. [2015]. For WCSPH,

the pressure is computed via Equation 10, where we set k = 5.250

and γ = 7, if not stated otherwise. We apply fixed time stepping for

WCSPH with ∆t = 1ms and adaptive time stepping for DFSPH as

presented by Monaghan [1992], where we restrict the maximum

time step to ∆t ≤ 5ms, except for measuring volume preservation.

In this case, we use a fixed time step of ∆t = 2ms for DFSPH. The

gradient correction scheme is always incorporated when using our

method as well as with the classic Shepard kernel.

When applying ourmodel to DFSPH,we observe a little roughness

at free surfaces. We attribute this to the interplay of our approach

and the constant-density solver. With our approach, densities are

corrected, especially at free surfaces, and we observe a slight over-

estimation of the pressure forces in these areas. To overcome this

issue, we scale the stiffness constant with ci at free surfaces, which
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No Correction Classical Shepard Our

 1002.5

  997.5

Fig. 5. The collapsing fluid block simulated with DFSPH (upper row) and
WCSPH (lower row). From left to right: no kernel correction, classical She-
pard correction, and our method. For both uncorrected and classical Shepard
correction, we observe fine-grained noise in the density field. Using our
technique, we achieve a completely smooth density field for WCSPH (lo-
wer right). Considering DFSPH, our method still significantly improves the
smoothness of the density field.

leads to a smooth appearance of the fluid surfaces. For a side-by-side

comparison, we refer the reader to the supplemental material.

6 EVALUATION
To show the versatility of our method we consider scenarios of

different characteristics and compare our technique to simulations

conducted with uncorrected as well as with classical Shepard cor-

rection. One class of examples are almost steady fluids, such as the

fluid pillar example depicted in Figure 2. To complement the eval-

uation, we explore the behavior of our method in highly dynamic

scenes like the corner dam break shown in Figure 6. To reduce the in-

fluence of the boundary model we examine the density distribution

of a collapsing fluid block standing on the ground (see Figure 5).

We evaluate our method considering two important aspects for

the animation of a fluid: the smoothness of the density field and the

volume the fluid occupies. A smooth density distribution is crucial

for the stability because most fluid quantities depend on the density,

especially the pressure, which usually produces the dominating

forces in the system and, hence, is crucial for the stability of the

simulation. With our method, we observe increased volume, which

indicates that we obtain a more accurate simulation. Besides the

density and volume discussion, we investigate convergence and

stability characteristics of our technique.

6.1 Density Field Evaluation
We inspect the density distribution visually and substantiate the ob-

servations by measuring the smoothness of the density field locally

and globally.

Figure 2 depicts a fluid pillar consisting of 60k particles simulated

with WCSPH. Without any kernel correction (left), we observe a

quite noisy density distribution throughout the fluid. This is slightly

improved by applying classical Shepard correction (center), but we

still recognize large fluctuations in the density field. As WCSPH

employs a state equation to compute the pressure, we will end up

with oscillations in the pressure field and large pressure forces in di-

verse directions, which cause instabilities in the simulation process.

Our method (right) achieves a smoother density field. We observe

almost no density fluctuations in the horizontal direction. When

simulating the fluid pillar using DFSPH, the density field is already

comparatively smooth without any correction and the effects of our

No Correction Classical Shepard Our         0

  1000

Fig. 6. A snapshot of the corner dam break scenario simulated with DFSPH
(upper row) and WCSPH (lower row). The particles are color-coded with
respect to the local density variance. On the left, the simulations without
kernel corrections are shown. We observe high local density variances at the
surface but also beneath. With classical Shepard correction (center), there
are only slight improvements recognizable. With our method (right), there
are only few regions with a high local density variance (where we would
expect them) and the majority of the fluid body has a variance close to zero.

method are less significant. Nonetheless, we observe slight density

fluctuations throughout the fluid body, which become worse when

employing classical Shepard correction. In contrast, when using our

method, they are less significant and we achieve a smoother overall

density distribution (see Section 3 of the supplemental material).

In all tested scenarios, we obtain a smooth density field, including

the collapsing fluid block (Figure 5), where a smooth density distri-

bution over the whole fluid domain can be observed for WCSPH

(lower row). For the simulation with DFSPH (upper row), we obtain

a smoother density distribution as well. Although the effect is less

prominent, it is still a significant improvement.

We confirm our observations by quantifying the noise in the

density field. To that end, we define a seminorm σi (ρ̄) to measure

local density variance:

σi (ρ̄) =
©­«
∑
j ∈Ni

(
ρi j

∥xi j ∥

)
2ª®¬

1

2

, (27)

where ρ̄ = (ρ1, ..., ρn ) is the vector of the particles’ densities, ρi j =
ρi − ρ j , and xi j = xi − xj . This could be interpreted as a local

L2-norm of finite differences. In addition, we define two norms

∥σ (ρ̄)∥σ ,1 =
1

n

∑
i ∈N

|σi (ρ̄)| and ∥σ (ρ̄)∥σ ,∞ = max

i ∈N
|σi (ρ̄)|, (28)

whereσ (ρ̄) = (σ1(ρ̄), ...,σn (ρ̄)).While the seminormσi (ρ̄) character-
izes local smoothness, the norms ∥σ (ρ̄)∥σ ,1 and ∥σ (ρ̄)∥σ ,∞ provide

a global characterization.

A snapshot of the dam break scenario is depicted in Figure 6,

where the particles are color-codedwith respect toσi (ρ̄). We observe

that our method reduces the local density variance, both at the

surface and inside the fluid.

Figure 7 shows the norm ∥σ (ρ̄)∥σ ,1 over time. This plot confirms

that we achieve a smoother density field for both pressure models,

i.e., we reduce the local density variance by orders of magnitudes. In

all examples, we obtain a reduced mean and max density variance.

In particular, in the fluid pillar scenario, the mean density variance

is almost zero at all times in the simulation, as Figure 8 shows. While
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Fig. 7. The mean local density variance ∥σ ∥σ ,1 over time for the corner dam
break scenario (Figure 6) simulated with WCSPH (left) and DFSPH (right).
Our method results in a much lower density variance, which is consistent
with the visualization of the local density variance in Figure 6.
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Fig. 8. Measurements of the mean local density variance for the fluid pillar
scenario (Figure 2) simulated with WCSPH (left) and DFSPH (right) compar-
ing the density smoothness with the norm ∥σ (ρ̄) ∥σ ,1. Classical Shepard
correction reduces the local density variance compared to the simulation
conducted without correction. Yet, we outperform both and achieve almost
zero local density variance.

a noisy density field occurs for the uncorrected and the Shepard

correction (at least until the fluid comes to rest), we obtain a smooth

density gradient using our correction. The same behavior can be

observed for ∥σ (ρ̄)∥σ ,∞. Measurements for other scenarios and plots

of ∥σ (ρ̄)∥σ ,∞ can be found in the supplemental material.

6.2 Volume Evaluation
We recognized a slightly increased volume of the fluid when ap-

plying our method. To further investigate this fact, we measure the

volume occupied by the fluid for two scenarios. The first one is the

fluid pillar depicted in Figure 9. Additionally, we simulate a fluid

cube with an edge length of 2m. In this scenario, we use hard-coded

reflective boundaries (i.e., particle positions are clipped at the do-

main boundaries and velocities are reflected) to exclude distortion

of the measurement due to the boundary model. Both scenarios are

simulated until the fluid comes to rest, then the enclosed volume

is computed. To this end, we generate an iso-surface of the fluid

with an offset of 0.025m and measure its volume. Table 1 provides

an overview of the measurements. In both scenarios, all methods

slightly underestimate the fluid volume. With our method, this un-

derestimation is reduced by a factor of about 2.9 for DFSPH in the

fluid block scenario. In the fluid pillar, there is a volume loss of 0.6 %

with our method compared to 4.1 % without kernel correction. For

WCSPH, we reduce the volume loss by a factor of 4.33.

No Correction Class. Shep. Class. Shep.Our No Correction Our
WCSPH DFSPH

Reference Height

Fig. 9. Volume preservation tests. The rest states of simulations of the fluid
pillar scenario with WCSPH (left three) and DFSPH (right three) are shown.
When using our method, we almost reach the analytically computed height.
As shown in Table 1, we decrease the volume loss compared to simulations
using classical Shepard and no correction.

6.3 Convergence and Performance
We analyze our algorithm regarding convergence rate and investi-

gate the stability and performance of the simulation. The study is

conducted on the corner dam break scenario consisting of 125k par-

ticles with an initial distance of 0.05m and a smoothing kernel size

of h = 0.1m. When simulating with WCSPH, the stiffness constant

is set to k = 75 000. For DFSPH, we set the maximum allowed den-

sity error to 0.01 % and the maximum allowed divergence error to

0.1 %. We increase the time step from ∆t = 1ms up to ∆t = 7.5ms

by steps of 0.5ms, measuring the needed iterations of our algo-

rithm to converge. The convergence criteria are set ε1 = 0.0001 and

ε2 = 0.0005. On the left of Figure 10, the measurements considering

the convergence rate of our method are given. Our method shows

a very fast average convergence rate. For DFSPH and ∆t = 4ms,

we are able to maintain an average convergence rate of 1.45 ite-

rations, and even with very large time steps such as ∆t = 7.5ms,

our method only needs on average 4.7 iterations to converge. Note

that the convergence of our technique is independent of the particle

count. In Figure 12 (right), we plot the average convergence rate for

the collapsing fluid block, while increasing the particle count. The

time step was set to ∆t = 1 ms. It is observable that we maintain an

almost constant convergence rate, and that our method scales well

with increasing particle count.

Since DFSPH itself employs two iterative solvers, we investigate

their convergence rate when combining them with our method. To

this end, we measure the needed iterations the divergence-free and

constant-density solver when including our technique as well as

without kernel corrections (Figure 10, right). We observe that the

Table 1. Volume preservation comparison. We conduct our test on two
different scenarios. The fluid pillar scenario (Figure 9, 60k particles) and
a fluid block of size 2 m× 2 m× 2 m (64k particles) are simulated until the
rest state is reached, then the enclosed volume is measured. For WCSPH
and DFSPH, we decrease the volume loss. Measurements are given in m3.

Ref. WCSPH DFSPH

No Corr. 7.49 (6.3%) 7.6 (4.9%)

Fluid Block Shepard 8 7.53 (5.9%) 7.73 (3.3%)

Our 7.69 (3.8%) 7.85 (1.7%)

No Corr. 7.01 (6.5%) 7.19 (4.1%)

Fluid Pillar Shepard 7.5 7.09 (5.5%) 7.29 (2.9%)

Our 7.39 (1.5%) 7.45 (0.6%)
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Fig. 10. Convergence analysis. We measured max and mean iterations of
our method in the corner dam break scenario, while increasing ∆t (left).
Additionally, for DFPSH we measured the mean iterations that the constant-
density (cd) and the divergence-free (df) solver needed to converge (right).

constant-density solver needs more iterations to converge when

using our approach, e.g., the constant-density solver of DFSPH

requires about 10 iterations without kernel corrections and 16 with

our method. Nonetheless, we are able to maintain a stable simulation

up to ∆t = 7.5ms, whereas the largest possible time step for the

simulation with uncorrected kernel is ∆t = 5ms.

Our method introduces a little computational overhead. In the

tested scenarios, we observe that the compute time per step is in-

creased on average by about 20% when employing our method. Most

of the overhead can be attributed to the fact that we need to include

the boundary particles into our model and, therefore, need an extra

loop over them. We observe that the overhead is reduced in scenes

that incorporate only few boundary particles.

6.4 Kernel Gradient Correction
We examine the error of the kernel gradient by computing ∥ξ si ∥
and the mean distance between the active particle and the ghost

particle. The measurements are given for the corner dam break

scenario. In Figure 11, the kernel gradient error is color-coded ac-

cording to ∥ξ si ∥. We observe that ∥ξ si ∥ is considerably reduced

when using classical Shepard correction (center) compared to a

simulation without correction (left). Our method further reduces

the error, especially in sparsely sampled regions such as within the

splashes. At first glance, the error appears to be rather small, but

in fact, it is not negligible. To gain a deeper understanding of the

error we compute the mean distance between particle i and the

virtually placed particle si . In Figure 12 (left), the mean distance

in relation to h is plotted over time. When simulating without any

kernel correction, particle si would be placed in a distance between

0.08h and 0.12h on average. This distance is rather small with our

method and classical Shepard correction alike.

7 DISCUSSION AND FUTURE WORK
ConsideringDFSPH,we recognize varying run-time overhead.When

incorporating our method, the constant-density solver of DFSPH so-

metimes needed fewer iterations and in others more. Unfortunately,

we could not find a pattern when these cases occur. We assume that

in some cases the pressure solver is badly preconditioned when in-

cluding our model into DFSPH. Choosing a different preconditioner

No Correction Classical Shepard Our

  0.01

  0

Fig. 11. Kernel gradient correction study. The particles are color-coded
with ∥ξ si ∥. From left to right: simulation without kernel correction, with
classical Shepard, and with our correction.
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Fig. 12. Left: Gradient correction showing the mean distance between the
current and the ghost particle over time. Right: Convergence study showing
the average number of iterations for increasing number of particles.

could help solve this issue. A more elaborative study on this fact

might be an interesting future research direction.

Since the boundary particles contribute to the density computa-

tion, we include them into our solver to compute correction factors.

This is a performance issue if the boundary objects dominate the sce-

nario. However, this issue can be addressed by incorporating other

state-of-the-art boundary models, such as pressure-based bound-

aries [Band et al. 2018] or moving least squares [Band et al. 2017].

When applying our gradient correction method, ghost forces are

introduced into the simulation. When additionally using our kernel

correction method, these forces become subtle. These ghost forces

alter the simulation in a way that the discretization becomes more

accurate and that the gradient kernel sum equals zero (at least for

any constant field). Combining our method with other kernel and

gradient correction schemes would be interesting to investigate.

As documented in Table 1, we observe a relatively high volume

loss for DFSPH. At first sight, this seems to be a contradiction to

the employed constant-density condition. However, when consider-

ing the fluid volume as a sum of individual particle volumes, i.e.,

V tot =
∑N
i=1

mi
ρi , there is no observable volume loss. This means

that the volume loss is not reflected in density errors. Furthermore,

it indicates that there might be a systematic error hidden in the SPH

model itself, in the discretization process, or in other approximations

made during the simulation. A more detailed investigation of this

fact is a goal for future research.

We compare our model with classical Shepard correction. As

mentioned in Section 2, it also works with higher-order kernel

correction schemes and it would be interesting to combine our

technique with them.
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8 CONCLUSION
We presented a novel kernel correction technique that accounts for

the error introduced by the discretization of the fluid. Our method is

unconditionally stable and efficient, as it converges very fast, i.e., our

solver needs on average fewer than 5 iterations to converge, even

in dynamic scenes with very large time steps such as ∆t = 7ms.

Compared to classical Shepard correction, we improve the smooth-

ness of the density field by reducing the noise in it and, therefore,

improve the stability of the simulation. This also improves the con-

figuration of the pressure field and pressure force field. A suitable

norm to measure both local and global smoothness was presented.

We show that our technique improves the volume preservation

of the fluid and, hence, increases the accuracy of the simulation.

Overall, our method complies with the SPH concept, is efficient to

compute, and can be used independently of the pressure model.
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A CONVERGENCE PROOF
In Section 4, we derived a fixed-point problem in a linear formulation

Ac = c , where A ∈ RN×N
and c ∈ RN with

ai j =
mjWi j∑

k ∈Nj mkWjk
.

From a mathematical point of view, the formulation corresponds to

an eigenvalue equation to the eigenvalue 1. Therefore, it is reason-

able to analyze the structure of the matrix A to prove existence and

uniquness (up to scaling) of a corresponding eigenvector. These

results will be the key for the convergence proof of the power

method.

For our derivation, we assume that the masses are equal, i.e.,

m = mi for all i = 1, . . . ,N . Before starting the investigation of

the matrix A, we introduce the concept of connected fluid bodies

regarding Lagrangian approaches.

Definition A.1. A fluid body with positions x1, . . . , xN ∈ R3
(or

∈ R2
) is called connected if for all pairs xi , xj there exist a L ∈ N

and xk1
, . . . , xkL such that xi ∈ Nk1

\ ∂Nk1
, xj ∈ NkL \ ∂NkL , and

xkl ∈ Nkl+1

\ ∂Nkl+1

for all l = 1, . . . ,L − 1, i.e., xk1
and xkL are

connected by a path xk1
, . . . , xkL of particles that are chained by

overlapping smoothing kernels.

The next lemma proves algebraic properties of the matrix A and

links the previous definition of connection to the matrix A.

Lemma A.2. The matrix A has the following properties:

(1) It is a left stochastic matrix, i.e.,
• 0 ≤ ai j ≤ 1 for i, j = 1, . . . ,N ,
•

∑N
i=1

ai j = 1 for j = 1, . . . ,N .
(2) The diagonal is positive, i.e., aii > 0 for i = 1, . . . ,N .
(3) It is irreducible if and only if the fluid body is connected.

Proof. If xj < Ni , thenWi j = 0 and hence ai j = 0. If xj ∈ Ni ,

we obtain

0 ≤
mjWi j∑

k ∈Nj mkWjk
≤

mjWi j

mjWji
= 1,

as mj = m > 0 and Wi j ≥ 0 for i, j = 1, . . . ,N . Furthermore,

summing up the columns of the matrix we get

N∑
i=1

ai j =
N∑
i=1

mjWi j∑
k ∈Nj mkWjk

=

∑
i ∈Nj mjWi j∑
k ∈Nj mkWjk

= 1.

The second statement follows from the properties of a smoothing

kernel. To prove the last statement we consider the fluid body to

be an undirected graph G , where particle positions are vertices and
(open) neighborhood relations correspond to edges. Denoting the

associated adjacency matrix by Ã, we get the following relationship

ãi j =

{
1 if ai j > 0 and i , j,

0 else.

Since the irreducibility of non-negative matrices is equivalent to

(I +A)N−1 > 0 [Horn and Johnson 2012, Theorem 6.2.24], we obtain

the equivalence

A irreducible ⇐⇒ Ã irreducible.

A well-known fact from graph theory is that the adjacency matrix Ã
is irreducible if and only if the corresponding graph G is connected.

By construction, the graph is connected if and only if the fluid body

is connected. �

The following lemma shows the spectral-theoretic properties

of the matrix A, characterizing the existence and uniqueness of an

eigenvector to the eigenvalue 1 and the location of other eigenvalues.

Lemma A.3. For the matrix A with eigenvector λ, the following
properties hold:

(1) The value 1 is an eigenvalue.
(2) If λ , 1, then |λ | < 1.
(3) If the matrixA is irreducible, then the eigenvalue λ = 1 is simple

and the corresponding eigenvector can be chosen to be positive,
i.e., every entry of the vector is positive.

Proof. The first statement is a direct consequences of Lemma

A.2 and the second follows from the fact that A is a left stochastic

matrix with a positive diagonal [Fritz et al. 1979, Theorem 2.6]. The

last statement is a well-known result from the Perron-Frobenius

theory for non-negative irreducible matrices [Frobenius 1912]. �

The next theorem is the final result proving the convergence of

the used power method.

Theorem A.4. For the matrix A, the following statements hold:
(1) The power method converges for every initial value, i.e., the

limit c∗ = limk→∞
Ak c0

∥Ak c0 ∥
exists for every c0 ∈ RN .

(2) For a non-negative initial value, the power method converges to
a non-negative eigenvector to the eigenvalue 1, i.e., for c0 ≥ 0,
the power method converges to an eigenvector c∗ ≥ 0 to the
eigenvalue 1.

(3) Let the fluid body be connected. For a non-negative initial value,
the power method converges to the unique positive eigenvector
(up to scaling).

Proof. By Lemma A.2 and Lemma A.3, the matrix A is a stochas-

tic matrix with λ = 1 as the only eigenvalue with |λ | = 1. Hence,

the series Ak converges [Fritz et al. 1979, Theorem 3.4] and, there-

fore, the limit of the power method limk→∞
Ak c0

∥Ak c0 ∥
exists for every

initial value c0. For c = limk→∞Akc0, we obtain

Ac = A lim

k→∞
Akc0 = lim

k→∞
Ak+1c0 = c,

which implies that the power method converges to a (normalized)

eigenvector c∗ to the eigenvalue 1. As the initial value is c0 ≥ 0, the

limit has to be c∗ ≥ 0.

If the fluid body is connected, we obtain by Lemma A.2 that the

matrix A is irreducible. Lemma A.3 implies the simplicity of the

eigenvalue 1 and the existence of a positive eigenvector. Therefore,

the limit of the power method has to be positive because the initial

value is non-negative and the eigenspace is one-dimensional. �
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