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Abstract
Spectral Subtraction is often used for noise reduction and speech enhancement. It is an important tool of digital audio
signal processing. Since its introduction in 1979, several problems like Phase Errors, Cross-time Errors and 
Magnitude Errors cause rather disappointing results. Beyond these errors, there is a fundamental problem within the 
basic principles of Spectral Subtraction, which is documented in this publication.

1. Introduction
Spectral Subtraction is a widespread method to dynamically 
process the spectrum of a digital audio signal. It gives you 
the possibility to edit a signal in a specific spectral range. 
The basis for this procedure is the discrete Fourier transform 
(DFT), which converts a time-series signal into the 
frequency domain and makes frequency analysis possible. In 
the spectral domain it is possible to edit individual spectral 
components, the so-called spectral coefficients. This makes 
it possible to subtract information from a specific frequency 
component. Finally, the processed signal can be 
resynthesized by means of an inverse discrete Fourier 
transform (iDFT). Therefore, the edited signal is available in 
the time domain once again.

The crucial advantage of the Spectral Subtraction is given by 
the short-time Fourier transform (STFT). With the STFT, it 
is possible to decompose a continuous stochastic signal and 
transform each time segment into the spectral domain. 
There, the time segments can be edited one after another. 
After the inverse transformation, the time segments can be 
recomposed into a continuous signal.

Because of the segmental processing, it is possible to edit
each segment individually. This means, we can create an 
adaptive, real-time signal processing algorithm with a short 
latency. This is the reason for the importance of the Spectral 
Subtraction in the last decades. A multitude of applications 
use this technique, like noise reduction and speech 
enhancement.

2. Fundamentals
2.1. Windowing of a Signal

The segmentation of a continuous input signal can be 
achieved with a window function , as we can see in 
Fig. 1.

Each segment is multiplied with the window function :

(1)

where is the discrete time index and 
the length of the segments. The variable defines the
first sample of the current segment. 

Fig. 1: Windowing of a continuous input signal using the von-Hann 
window function with an overlap of 50%.

An overlap of the segments is possible. Depending on the 
length of overlap, a compatible window function has to be 
chosen. The sum of the successive window functions always 
has to be one. This restriction is given in order to prevent a 
distortion of the signal within the resynthesis process, more 
precisely through the multiplication with the window 
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function. This means that the windowing must result in a
constant amplification of 1.

rectangular window:

(2)

with .

If we want an overlap of 50%, we can, for example, choose 
the von-Hann window function:

(3)

with .

In Fig. 2 you can see the von-Hann window functions for the 
segmentation of an input signal. Any window function can 
be used as long as the constraint of constant amplification is 
met.

Because of the use of a window function, a segment is also 
called window.

Fig. 2: Von-Hann window functions with a length of 2048 samples 
and their sum.

2.2. Short-Time Fourier Transform

After the segmentation of the input signal, the short-time 
Fourier transform (STFT) uses the Discrete Fourier 
transform to transport each window into the frequency 
domain. We obtain the DFT-coefficients using [4][8]:

(4)

where is the discrete frequency index.

Each DFT coefficient represents a constant oscillation with 
the dedicated frequency :

(5)

where represents the sampling frequency which was used
for the sampling during the digitalisation of the input signal. 
The absolute value of the DFT coefficient is the amplitude 

of the oscillation and describes the
corresponding phase angle.

By means of the inverse discrete Fourier transform we can 
transport the spectral signal back into the time
domain [4][8]:

(6)

with . Thus, the two signal sequences 
and are a transform pair.

Finally, the processed signal segments can be recombined
according to the defined overlap.

2.3. Characteristics of the STFT

The Short-time Fourier transform has a number of 
characteristics which are accurately described in the relevant 
literature [2][4][8][9]. Two of these characteristics are 
especially important for Spectral Subtraction: the periodicity 
and the resolution of time and frequency.

2.3.1. Periodicity

The exponential function behaves in a periodic
fashion depending on . This results the periodicity of the 
DFT and consequently of the STFT [4][8]:

(7)

and

(8)

2.3.2. Time Resolution and Frequency Resolution

By using a clever analogy to the Heisenberg uncertainty 
principle, Küpfmüller points out that it is not possible to
simultaneously achieve both a high resolution in time and in
frequency within the spectral domain [7].

The background of this principle is the identical length of 
the transform pair consisting of the time-domain signal

and the signal in the frequency domain . To
get a high frequency resolution, we need a preferably long 
signal length. Contrarily we achieve a high time resolution 
using a short window in the time domain as this enables us 
to compute an individual spectrum for each short time 
segment.

Fig. 3-5 make this uncertainty principle clear. We can see 
several spectra over time. The test signal, which is a sine 
wave changing its frequency every second, was transformed 
into the spectral domain by means of STFT. The charts 
differ in the window lengths which were used for the STFT.
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Fig. 3: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 64 samples 
and a sampling frequency of 48kHz.

Fig. 4: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 512 
samples and a sampling frequency of 48kHz.

Fig. 5: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 8192 
samples and a sampling frequency of 48kHz.

We can solve this conflict with the help of a process called

short time segment we can add a number of zeros at the end 
of the windowed time signal:

(9)

where and represents the number 
of the added zeros. Thus, it is possible to simultaneously 
achieve a high time resolution and a high frequency 
resolution within the STFT.

2.4. Spectral Subtraction

During Spectral Subtraction the amplitudes of two spectral 
signals are subtracted from each other. If is the
minuend and is the subtrahend, we obtain the
difference [3]:

(10)

where is a real weighting factor which regulates the 
subtrahend , so that cannot assume
negative values:  

(11)

The real factor defines the intensity of the Spectral 
Subtraction. If , there is no subtraction. If , the 
subtraction is maximal. The quotient of and

prevents that can become negative if the
absolute value of is larger than the absolute value of

.

he amplitudes, but the power,
equation (10) is modified to produce :

(12)

A more general form can be written as:

(13)

This is often named parametric spectral subtraction [5] and 
sets a variable exponent. With we obtain the spectral 
subtraction from (10) and with we obtain the spectral 
subtraction of the power from (12).

Combined with the phase of the input signal 
, the output signal can be computed with:

(14)

To an extent, this operating sequence is a makeshift method.
It is to be expected that after the subtraction, the correct 
phase of is not identical to the phase of the input
signal . Jens Groh asserts that the correct phase often 
cannot be derived [6]. Thus, in many cases, the correct phase 
of the output signal is simply unknown. Studies have shown, 
that phase corruption in the spectral domain is considerably 
less perceptible than a corruption of the amplitude in this 
domain [10].



30th TONMEISTERTAGUNG VDT INTERNATIONAL CONVENTION, November 2018

Finally, the output signal can be transformed back into the 
time domain by using the iDFT:

(15)

Thereby the output signal is as long as the input signal and 
consists of samples.

3. Spectral Subtraction as a
Time-Variant System

The Spectral Subtraction can be considered as a time-variant 
system with a varying processing and parameters that can 
change from window to window.

Hence, we are able to write the subtraction in the spectral 
domain from (13) as a multiplication:

(16)

Then the amplitude response of this system is:

(17)

and the frequency response of each window is:

(18)

Assuming , the equations (17) and (18)
leads us to:

(19)

Like the input signal , the frequency response
consists of DFT-coefficients. Thus, the spectral output 
signal can be computed as a product of the spectral
input signal and the frequency response :

(20)

A multiplication in the spectral domain corresponds to a
convolution of the equivalent signals in the time domain [2]:

(21)

where describes the impulse response of the system
and is the length of this impulse response.

4. The Fundamental Problem
4.1. The Length of the Output Signal

The length of the output signal of a convolution is [2]:

(22)

where is the length of the input signal, is the
length of the impulse response and is the length of the
convolved signal.

Considering the convolution in (21), both the input signal 
and the impulse response are of length . Therefore, the 
output signal consists of samples.

This means, that the output signal computed using convolution
in the time domain is nearly twice as long as the output 
signal which is computed using Spectral Subtraction in the 
spectral domain and which has samples. Thus, the output 
signal in (21) cannot be the same as the output
signal in (15) with (13) and (14), as we can see in Fig. 6.

The reason for this is the static signal length in the spectral 
domain and the periodicity of the DFT. The periodicity
presupposes a continuous repetition of the finite output 
signal. The modifications of the DFT coefficients cause an 
extension of the signal when transformed back into the time 
domain. The part of the processed signal after the th
sample will be continued at the beginning of the window.
Since the STFT does not take this repetition at the 
recombination of the windows into account, an error 
inevitably occurs. We receive an overlap with a signal part, 
which is inserted at the wrong time position. This error 
becomes apparent when the signal is compared directly with 
the output signal, which is computed by convolution in the 
time domain. In Fig. 6 we can see the differences between 
the output signal of the Spectral Subtraction and the output 
signal of the convolution.

4.2. Zero Padding is no Solution

By using zero padding, we can reduce the effective length of 
the input signal in relation to the length of the window 

. Consequently, the length of the frequency
response increases and for this reason the length of 
the impulse response will increase up to the 
extended window length of samples.

The constraint that the output signal fits into the window
without an overlap is only fulfilled in the case of :

(23)

This case is unusable for Fourier analysis.
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4.3. An Example to Illustrate

To illustrate the behaviour of the DFT in combination with 
Spectral Subtraction we generate a window of a synthetic 
input signal:

(24)

with and . The result is the 
black graph in Fig. 6. We multiply this input signal with the 
von-Hann window function from (3):

(25)

To get a better frequency resolution we add 16 zeros:

(26)

We receive the windowed input signal with zero padding, as 
illustrated by the blue graph of Fig. 6.
As an example, we reduce the third, fifth and ninth DFT 

coefficients by about 70%, using Spectral Subtraction and
(4), (10) and (14). The result is the output signal of the 
Spectral Subtraction, shown as the orange graph. Now we 
compare this result with the equivalent processing using
convolution in the time domain. By means of (19) with 
and (21), we receive the green graph. The difference of these 
two output signals (red graph) shows the wrongly inserted 
part of the signal, occurring due to the periodicity of the 
DFT.

5. Analysis of the Impulse Response
If we look to the impulse response of the Spectral
Subtraction, which is the inverse Fourier transform of 

:

(27)

it becomes apparent, that the maximum of the impulse response
is located at the first sample , as we can see in Fig. 7.

Fig. 6: Comparison of Spectral Subtraction using STFT and the equivalent processing with a convolution in the time domain. A windowed 
test signal of 16 samples is processed with Spectral Subtraction in the spectral domain and with a convolution in the time domain. The last 
diagram shows the signal part which is at the wrong position in the output signal when processed with the Spectral Subtraction.



30th TONMEISTERTAGUNG VDT INTERNATIONAL CONVENTION, November 2018

Fig.7: Impulse response of the Spectral Subtraction, computed with (10)
and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 8: Phase response of the Spectral Subtraction, computed with (10)
and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 9: Group delay response of the Spectral Subtraction, computed 
with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 
by ~70%.

Furthermore, the samples to are axis-
symmetric to . This impulse response behaves as if 
multiplied with the Heaviside step function:

(28)

and shows a nonlinear phase shift, as we can see in Fig. 8 
and a strong varying group delay depending on frequency, as 
we can see in Fig. 9. We obtain the strongest group delay at 
the three processed DFT coefficients.

To prevent nonlinear phase shifting and an inconstant group 
delay, we must shift the phase within the processing in the 
spectral domain, depending on frequency. The phase of the 
DFT coefficients representing high frequencies with a short 
wavelength have to be shifted more than the phase of DFT
coefficients representing low frequencies. For an impulse 
response with an even length and an even symmetry we 
obtain the phase difference [2][9]:

(29)

where is the normalized complex angular frequency.
If we include this phase difference in (14), we receive:

(30)

Subtraction.

In Fig. 10 12 we can see the symmetric impulse response, 
the linear phase response and the constant group delay of the 
Advanced Spectral Subtraction using (10) and (30).

Fig. 10: Impulse response of the Spectral Subtraction, computed with 
(10) and (30). The third, fifth and ninth DFT coefficients are reduced by 
~70%.
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Fig. 11: Phase response of the Spectral Subtraction, computed with (10)
and (30). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 12: Group delay response of the Spectral Subtraction, computed 
with (10) and (30). The third, fifth and ninth DFT coefficients are reduced 
by ~70%.

As we can see in Fig. 12, the Advanced Spectral Subtraction 
results in a constant group delay, which also means that the 
processing has a latency of one half window length.

Finally, we can take a look at the two magnitude responses, 
computed by Spectral Subtraction using (10) and (14) and by 
the Advanced Spectral Subtraction using (10) and (30).

The two magnitude responses show strong similarity. We 
can see the three attenuations, with the red one providing a
slightly narrower band width. It also becomes apparent that 
the Spectral Subtraction with linear phase has a low-pass 
behaviour at very high frequencies. This is the result of an 
impulse response with an even length and an even symmetry 
[2][9]. In the vast majority of cases, this behaviour is of little 
to no consequence. For example, in digital audio signal 
processing with a sampling frequency of , the
cut off is located above the upper limit of human perception.

Fig. 13: Magnitude response of the Spectral Subtraction. The blue 
graph is computed with (10) and (30) and the red graph is computed 
with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 
by ~70% within the processing.

6. Conclusion
We can state that processing in the frequency domain makes 
the signal longer. The signal part by which the output signal
is longer than the input signal corresponds to the transient 
effect and decay process of the impulse response. The 
crucial point is to arrange the transient and decay parts at the 
correct time position in the output signal.
If we do the processing in the spectral domain via STFT, 
because of the periodicity, we receive an overlap in the 
output signal during resynthesis. This means, that we have a 
signal part at the wrong time position. Since the STFT does 
not take this repetition into account, an error inevitably 
occurs.

The subjective perception of this error is relatively small.
Furthermore, it is not the reason of the artefact called 

Presumably, the resulting error is covered 
by stronger artefacts like the aforementioned

can occur because of a dynamic processing in 
the spectral domain, too.

Irrespective of this, it is recommended to work around this 
error. For example, the resulting amplitude response can be 
smoothed. This approach minimizes the error, but it does not 
completely prevent it. To obtain the correct output signal, 
the frequency response can be generated. By means of the 
iFFT, we receive the impulse response of the processing. 
Now it is possible to compute the output signal with 
convolution of the windowed input signal and the impulse 
response in the time domain. This means, that the algorithm 
has more calculating steps and needs more time for the 
processing. However, with the fast convolution we have a 
fast-acting tool, which uses the fast Fourier Transform FFT.

The question arises as to why the fast convolution can 
compute the output signal without an error while still using 
the DFT. When we use the fast convolution, we have the 
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windowed input signal and the complete processing 

generate the frequency response in the spectral domain. The 
fast convolution fills up the windowed input signal and the 
impulse response with enough zeros to fit the entire output 
signal into the window.
This is still not possible if we generate the frequency response
of the Fourier transformed window with the input signal in 
the spectral domain, like the Spectral Subtraction does. In 
this case, the frequency response and for this reason the 
impulse response are always as long as the transformed
window. Therefore, the output signal does never fit into the 
window.

We can conclude that Spectral Subtraction has a fundamental
problem within its approach. But it is possible to work 
around this weak spot and prevent the occurring error.
Furthermore, we can use a phase shift within the processing, 

Subtraction does not have 
any nonlinear phase response or inconstant group delay.
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