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ABSTRACT

The accurate display of frequency dependent polar response data of microphones has largely relied on the use of a
defined set of test frequencies and a simple overlay of two-dimensional plots. In recent work, a novel approach
to digital displays without fixed frequency points was introduced. Building on this, an enhanced interpolation
algorithm is presented, using higher-order spherical harmonics for angular interpolation. The presented approach
is compared to conventional interpolation methods in terms of computational cost and accuracy. In addition, a
three-dimensional data processing prototype for the creation of interactive, frequency-dependent, three-dimensional
microphone directivity plots is presented.

1 Introduction

Traditional displays of directional microphone sen-
sitivity provide a limited insight into the frequency-
dependent directivity characteristics. The use of de-
fined test frequencies, multiple measurement over-
lays, and the restriction to two dimensions reduces the
amount of information that can be obtained from such
figures. As an improvement, the authors suggested
a software-based display with a non-fixed frequency
point. Using this, an interactive display of the direc-
tivity properties of microphones and coincident arrays
can be created [1]. One crucial element of data pro-
cessing for this application is the angular interpolation.
This paper focuses on the use of spherical harmonic

interpolation (SHI) for this task. Both speed and ac-
curacy are compared to the performance of traditional
3rd- order spline interpolation. In an evaluation using
measured data, depending on the order of SHI, the inter-
polation speed and accuracy outperformed traditional
spline interpolation. In addition, the simplicity of adap-
tation to three-dimensional measurements is shown on
simulated measurement data.

2 Methods

2.1 Cubic Spline Interpolation

The angular resolution of measurement data can be in-
creased by creating virtual measurement points. This
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Fig. 1: Spherical harmonics with n ≤ 4. Only com-
ponents relevant to the xy plane are used for
two-dimensional interpolation.

was formerly achieved using cubic spline interpolation,
which uses third order polynomials within every inter-
val between measurement points [Si(ν) , Si+1(ν)] with
i = 0, 1 . . . [2, 3].

Considering the ith spline interval Si, the interpolation
function takes the form:

Si(τ) = ai +bi τ + ci τ
2 +di τ

3 (1)

with 0 ≤ τ ≤ 1. By defining a set of boundary condi-
tions appropriate to the system’s physical behavior, it
is possible to solve for all variables ai, bi, ci and di in
every interval i and at all frequencies ν .

2.2 Spherical Harmonic Interpolation (SHI)

A more elegant approach uses spherical harmonics for
this task. This set of orthogonal base functions defined
on the surface of a sphere can be expressed as

Y m
n (θ ,φ) =

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cosθ)eimφ , (2)

where Pm
n (·) are the associated Legendre functions, m

is an integer representing the function degree, and n
is a natural number representing the function order
[4]. The associated Legendre functions are derived by

Fig. 2: Comparison of spherical harmonic interpola-
tion computed with order limits of 2 and 8.
While n ≤ 2 provides a smoother angular re-
sponse, n ≤ 8 retains a higher level of detail.
Measurement data: Schoeps MK8 at 10 kHz

differentiating the Legendre polynomials and are given
as

Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm Pn(x), x ∈ [−1,1],

(3)

with Pn(x) representing the Legendre polynomials
which arise when m = 0. They are defined as

Pn(x) =
1

2nn!
dn

dxn (x
2−1)n. (4)

Spherical harmonics have the useful property that any
arbitrary function on a sphere f (θ ,φ) can be be repre-
sented as

f (θ ,φ) =
∞

∑
n=0

n

∑
m=−n

fnmY m
n (θ ,φ), (5)

with fnm being the function weights defined as

fnm =
∫ 2π

0

∫
π

0
f (θ ,φ)[Y m

n (θ ,φ)]∗ sinθdθdφ . (6)

The weights form what is known as the spherical
Fourier transform, while equation (5) is the inverse
spherical Fourier transform [4, 5].

Using equations 5 and 6, a spherical harmonic data
interpolation method can be devised. Measurement
data are transformed via spherical Fourier transform
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Fig. 3: Comparison of algorithm accuracy. Interpolated measurement points from a down-sampled dataset are
compared to high-resolution measurements. The error is computed as the sum of absolute errors over 72
points on 360◦. Due to the small change in error over a large range of SHI orders, a logarithmic display is
chosen. At the indicated minima, SHI outperforms cubic spline interpolation by approximately 0.25 dB for
the Schoeps CCM4 cardioid capsule and by approximately 0.5 dB for the Schoeps MK8 figure-of-eight
capsule used for the measurements.

onto a base of spherical harmonic functions Y m
n (θ j,φk),

sampled on a grid of dimension j× k, matching the
resolution of the measurement data. Later, an inverse
spherical Fourier transform onto a grid with a higher
spatial resolution results in the desired discrete angu-
lar interpolation. Since the spherical harmonic base
functions are continuous, the discrete resolution of the
interpolated data depends on the grid for the inverse
spherical Fourier transform and therefore can be varied.

3 Results

The use of spherical Fourier transforms for data in-
terpolation creates an effective approach to angular
smoothing within the application described in section 4.
Lower-order transforms provide the capability to re-
trieve the basic microphone directivity characteristics
with computational efficiency, while higher-order trans-
forms outperform the traditional spline methods in
terms of accuracy.

All basic microphone polar patterns inherent to pressure
sensors and pressure-gradient sensors can be described
using an omnidirectional sphere and a bidirectional
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Fig. 4: Computational cost of interpolation algorithms.
24 Measurement points with 20000 frequency
bins each were processed. Up to n = 8, spheri-
cal harmonic interpolation is faster than spline
interpolation.
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figure-of-eight [6, chapter 5]. Hence, combinations of
spherical harmonics with n≤ 1 are sufficient. Adding
higher order spherical harmonics subsequently adds
additional information about the measured microphone
response. Figure 1 shows the first 5 orders of spheri-
cal harmonics (0≤ n≤ 4). It is apparent that n = 0 is
analogous to omnidirectional microphone characteris-
tics, while n = 1 produces functions in clear relation to
figure-of-eight microphone polar patterns with orthog-
onal spatial orientation.

Figure 2 shows data interpolation using spherical har-
monics with n≤ 2 and n≤ 8. The measurements were
performed on a Schoeps MK8 figure-of-eight capsule
sampled at 37 points between 0◦ and 180◦ along the
horizontal plane, resulting in an angular resolution of
5◦. For ease of display and assuming rotational symme-
try in the MK8’s polar pattern, the 180◦ measurement
was expanded to a full circle.

3.1 Performance

The proposed algorithms are currently computed within
Mathworks’ Matlab R©, using the AKtools toolbox [7].
With this setup, the processing time for data interpola-
tion was inspected on a dataset with 24 measurement
points (∆θ = 15◦) and 20000 frequency bins. Figure 4
shows that for the presented case, spherical harmonic
interpolation provides faster results than spline interpo-
lation up to an order of n = 8.

3.2 Accuracy

To compare the quality of interpolated data, a set of
measurements was down-sampled by a factor of 3, go-
ing from ∆θ = 5◦ to ∆θ = 15◦. After data interpola-
tion, the difference between interpolated data points
and actual omitted measurement points was calculated.
Figure 3 shows the resulting error values for different
orders of spherical harmonic interpolation, compared
to the error of spline interpolation. Both cardioid and
figure-of-eight characteristics can be interpolated to a
high level of accuracy with surprisingly low orders of
interpolation. Taking the logarithmic nature of Figure 3
into account, acceptable results are achieved with or-
ders as low as 3. This is in part due to the very rough
sampling of only 24 points. Figures 2 and 5 show
that with higher measurement resolution, higher order
interpolation is advisable. Figure 3 also shows that, as-
suming maximum-order SHI as defined in section 3.3,
cubic spline interpolation is outperformed by spherical

Fig. 5: Comparison of higher-order (n≤ 18) spherical
harmonic interpolation and cubic spline inter-
polation.

harmonic interpolation. For the CCM4 capsule, SHI
at 10 kHz results in approximately 0.25dB less total
error, for the MK8 capsule, the difference amounts to
approximately 0.5 dB.

3.3 Aliasing

There are multiple ways to sample points on a sphere
but the choice is often dependent on the measurement
apparatus. Two common methods are Equal Angle
Sampling which samples a sphere at uniformly-spaced
angular positions, and Gaussian Sampling which sam-
ples the sphere with evenly spaced angles along the
sphere [4]. Equal Angle Sampling requires 4(n+1)2

samples, where n is the desired order of spherical
harmonics, while Gaussian Sampling only requires
2(n+ 1)2 samples. This study uses equal sampling
along the azimuthal angle, so Gaussian sampling is
used and 2(n+ 1) equal-angle samples are required
along the azimuthal angle. Originally, measurements
were taken at 5◦ along the azimuth. After extrapolation
to 360◦ and the removal of duplicate measurement lo-
cations at 0◦ / 360◦ and 180◦, 72 measurement points
remain, resulting in a maximum spherical harmonic
order of n = 35. When the data are down-sampled
to 15◦ angles for verification, the maximum spherical
harmonic order becomes n = 11. If interpolation is
performed at a higher order than the maximum order
defined by the sampling rate, aliasing can occur. An
example of possible aliasing is shown in Figure 6.
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Fig. 6: Aliasing effects due to interpolation above the
sampling limit. Left: Dataset with 72 measure-
ment points in 360◦, interpolated with n≤ 23.
Right: Dataset with 24 measurement points in
360◦, interpolated with n≤ 23. Choosing inter-
polation orders above the sampling limit intro-
duces unwanted oscillations in the interpolated
data. The higher the order, the more drastic the
oscillations.

4 Application

Currently the primary use for the developed approach is
within a software prototype for the interactive display
of frequency dependent microphone polar patterns [1].
Building on this prototype, spherical harmonic interpo-
lation enables the user to adjust the amount of angular
smoothing applied to the data. Figure 7 shows measure-
ment data of a Schoeps CCM4 cardioid capsule being
displayed at 1000 Hz with an interpolation order of
11. The original measurements were gathered with an
angular resolution of 15◦, therefore n≤ 11 is the high-
est order of interpolation below the aliasing threshold.
Expanding the software to three-dimensional balloon
plots is easily achieved by expanding the grids for the
spherical Fourier transform and the inverse transform
to a 3-D system. This is discussed in the following
section. The multidimensional display of transducer
measurement data is common practice for loudspeaker
measurements and can be achieved using various ap-
proaches, with contour and balloon plots being the
most prominent [8, 9]. In the context of microphone
characterization, this is less common.
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Fig. 7: Example application for SHI methods. Soft-
ware prototype interactively displaying fre-
quency dependent microphone polar data with
variable angular smoothing.

5 Outlook

As described by Angus and Evans [10], SHI can be
used to interpolate three dimensional measurements of
transducer behavior. Lacking sufficient measurement
data, the two-dimensional set used for Figures 2, 5,
and 6 was extrapolated to a three-dimensional system.
Added noise was applied to create a dataset with im-
perfect rotational symmetry. Figure 8 shows the raw
data, alongside interpolations using n≤ 7 and n≤ 17.
Future investigations will be focused on the acquisi-
tion and processing of three dimensional microphone
characteristics.

6 Summary

In the context of an interactive method for the
frequency-dependent display of microphone directiv-
ity measurements, spherical harmonic interpolation
is introduced. The computational cost of the opera-
tion is compared to that of the more traditional and
less application-specific approach of cubic spline in-
terpolation. Within the used environment, SHI can be
shown to be the faster processing method when inter-
polating at lower orders. In addition, the accuracy of
the mentioned interpolation methods are compared by
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Fig. 8: Three-dimensional SHI demonstrated on simulated measurement data. The planar measurement of a
Schoeps MK8 figure-of-eight capsule is expanded, making use of the inherent rotational symmetry of such
microphones. Later, this symmetry is partially broken by randomly scaling some of the impulse responses
using a normal distribution with µ = 1,σ = 0.5. This synthesized dataset is interpolated using SHI7 and
SHI17.

omitting data from a measurement and comparing the
algorithmically synthesized data with actual measure-
ments. Based on this comparison, it is possible to show
that SHI outperforms cubic spline interpolation when
the interpolation order is chosen close to the aliasing
limit described in section 3.3. As a proof of princi-
ple, three-dimensional SHI for microphone patterns is
demonstrated on a semi-synthesized dataset consisting
of planar measurement data and noise.
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