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ABSTRACT

Acoustic Source Localization and Speaker Tracking are continuously gaining importance in fields such as human
computer interaction, hands-free operation of smart home devices and telecommunication. A set-up using a Steered
Response Power approach in combination with high-end professional microphone capsules is described, and the
initial processing stages for detection angle stabilization are outlined. The resulting localization and tracking
can be improved in terms of reactivity and angular stability by introducing a Convolutional Neural Network for
signal/noise discrimination tuned to speech detection. Training data augmentation and network architecture are
discussed, classification accuracy and the resulting performance boost of the entire system are analyzed.

1 Introduction

For the scenario discussed in this paper, a Steered Re-
sponse Power (SRP) algorithm, combined with a co-
incident microphone array is used to track speakers
in a conference environment. As SRP is an energy-
based detection algorithm, no distinction between a
desired signal (i.e. human speech) and undesired inter-
ference (i.e. office or traffic noise) can be made. Some
improvement in direction of arrival (DOA) estimation
can be achieved by applying detection filters1 prior to
the SRP processing, thus only registering energy in a
frequency range relevant to human speech. This ap-
proach is relatively limited, as many types of noise

1The results presented in this paper were obtained using a band-
pass detection filter in the range of 200 Hz to 4000 Hz.

show a wide frequency range, often overlapping that of
speech signals. A more sophisticated sound source dis-
crimination is described using a Convolutional Neural
Network (CNN) for sound source classification. Spec-
tral and temporal information is processed by the CNN,
using spectrograms of buffers spanning 128 ms and 75
frequency bands, in a frequency range of 200 Hz to
8000 Hz.

2 Methods

2.1 Microphone Array Configuration

The task of Acoustic Source Localization and tracking
of a moving acoustical source can be approached in
many different ways, the use of linear or circular spaced
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arrays being favored in many consumer-grade applica-
tions [1]. For audio capturing, the disadvantage of
conventional spaced arrays, compared to coincident mi-
crophone configurations, is the inferior audio quality of
the created beam. Spaced arrays are prone to distorted
frequency responses, due to the fact that the created
beam patterns are frequency-dependent [2]. Some re-
cent advances have been made, although satisfactory
results require an upper frequency limit of 8 kHz [3].
The audio quality of beams created by coincident mi-
crophone arrays solely depends on the quality of the mi-
crophone capsules used, thus resulting in a more linear
frequency response, even with respect to moving beams
required for source tracking. However, higher-order
beams can not be achieved using first-order coincident
arrays [4]. For Machine Listening applications, the re-
quirements regarding audio quality are often relatively
low and are defined by the algorithms used. Often a
frequency range of 100 Hz to 8000 Hz is chosen. In
other cases the bandwidth of telephone conversations
(5 Hz to 3700 Hz) is sufficient [5]. Because the array
described in this paper is used for audio capturing in
conference environments, optimal sound quality is re-
quired. Therefore, a configuration consisting of three
high-end microphone capsules is chosen. Due to hard-
ware considerations, a Double-M/S configuration is
used, consisting of two Schoeps CCM-4 cardioid cap-
sules and a Schoeps CCM-8 figure-of-eight capsule.
One cardioid c f faces 0◦, while the other cardioid cr
faces 180◦ and the figure-of-eight f8 is positioned fac-
ing ±90◦.

2.2 Acoustic Source Localization

From the Double-M/S configuration, a horizontal Am-
bisonics B-format can be decoded [6]:

W = c f + cr (1)
X = c f − cr (2)
Y = f8 (3)

Using the WXY-decoded signals, any arbitrary first-
order microphone pattern M(θ , p) can be synthesized
on the horizontal plane [7, 8]:

M(θ , p) = pW +(1− p)(X cosθ +Y sinθ) , (4)

with p representing the polar pattern shape between
p = 0 (figure-of-eight) and p = 1 (omnidirectional),

and θ describing the orientation on the horizontal
plane.

Using (4), nM virtual cardioid microphone sig-
nals2 can be synthesized. The virtual microphone with
the highest relative RMS level indicates the Direction
of Arrival of the sound source θDOA:

θDOA = argmax
θi

(
M(θi, p = 0.5)

)
, i = 1, ...,nM. (5)

Under certain conditions reflected sound can surpass
the original source in sonic energy. Currently no sce-
narios have been recorded in which a significant per-
formance decrease could be attributed to false DOA
detection due to reflections.

2.3 Confidence Weighting

Building on the SRP maximization described in section
2.2, additional angular stabilization is applied. This is
achieved using exponential smoothing [9]:

st =α xt +(1−α) st−1, (6)

with xt and st representing the input and smoothed
output angle for time frame t. 2π-wrapping of the
angle is addressed in a separate function.

Using the smoothing factor α ∈ [0,1] creates a
static smoothing effect which does not reflect any
characteristics of the processed signal buffer. To
achieve variable smoothing, the coefficient α is
dynamically assigned, depending on a set of signal
quality metrics. In the following paragraphs, this will
be called confidence weighting, which consists of four
types of confidence indeces C:

• Directivity weighting Cd – the level of anisotropy
of the detected sound indicates whether an actual
sound event is detected.

• Level weighting Cl – if a buffer contains a low
relative sound level, no relevant sound events are
expected.

• Long-term weighting Clt – if sound events have
frequently been detected from a direction, a quasi-
static sound source such as a speaker at a table
can be assumed.

2 p = 0.5
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Fig. 1: Comparison of tracker output with and without
angular stabilization. The average error can be
reduced from 25.68% to 6.46% when using a
dynamic smoothing coefficient α . Solid lines
represent reference position.

• Speech detection Cs– if a buffer is not classified
as speech, no relevant sound events are expected.

The last contribution to the confidence index is deter-
mined using a Convolutional Neural Network (CNN),
trained to discriminate between speech and non-speech.

The confidence indeces are combined to create the dy-
namic weighting factor α:

α =
(
κ Cd +(1−κ)Cd Clt C2

s
)

Cl , (7)

using the empirically determined mixing factor κ .

Angular stabilization is essential for this type of acous-
tic source localization. Figure 1 shows a comparison
of the tracker output with and without stabilization.

2.4 Mel-Scale Spectral Analysis

Convolutional Neural Networks provide excellent pro-
cessing capabilities on two-dimensional arrays, such
as images. For training and classification, the audio
stream is processed via Fourier Transform to Log-Mel-
scale spectrograms, using the feature extraction tool-
box provided by the University of Oldenburg [10]. The
Mel scale is used, since it closely resembles human
perception of sound and has proven effective in com-
bination with Neural Networks for audio classification
and speech detection [11, 12]. Buffers of 2048 samples
are analyzed at Fs = 16kHz sampling rate3, resulting
in 128 ms of audio per buffer. The spectral transform is
performed using a window size of 28 ms, which is suc-
cessively shifted by 10 ms. The processed frequency
range is between 200 Hz and 8 kHz, divided into 75
Mel-bands. Examples of extracted spectrograms can
be seen in Figure 3.

2.5 Neural Network Architecture

As the entire signal processing chain was created in
MATLAB, the use of MATLAB’s Neural Network
Toolbox for the speech detector ensures a seamless
integration and easy fine-tuning of the processing.

The processing steps presented in section 2.3
and 2.4 output Log-Mel-scale spectrograms of the
dimension 75x11x1. These define the dimensions
of the input layer of the CNN. Two-dimensional
convolution is applied, using 8 5x5 filter matrices and
zero-padding to maintain the input layer dimension
("same" padding) [13, 14]. The convolution output
is then shrunk by choosing the maximum value of
every 2x2 subset. This operation is called Max-pooling
with a pool size of 2 and a stride of 2, and is used to
transform the matrix to a dimension of 38x6x84. The
next convolution operation uses 16 3x3 filters and same
padding. Combined with a max-pooling operation
with a pooling size and stride of 2, the dimensions are
transformed to 19x3x16. The last convolution uses
32 3x3 filters and same padding, resulting in 1824
inputs for the first fully connected layer, which outputs

3The entire tracking algorithm runs at 48 kHz. The decision to
down-sample by a factor of 3 is the result of the data set used for
augmentation, as described in section 2.6, and the chosen frequency
range with an upper limit of 8 kHz.

4To achieve the desired output dimensions, max-pooling is
padded with pbottom = 1 and pright = 1. Details are discussed in
section 2.7.
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Fig. 2: Architecture of the neural network used as speech detector. The input Mel spectrogram measures 75x11x1
pixels. Using three convolution layers, two max-pool layers and two fully connected layers, validation
accuracy is 91.23 %.

Fig. 3: Log-Mel-scale spectra created for training and
classification using a CNN. 128 ms of audio
are processed using 75 Mel-bands, spanning
200 Hz to 8000 Hz. The resulting spectrograms
are displayed as gray-scale images of 75x11
pixels. Left: spectrograms of audio buffers con-
taining speech. Right: spectrograms of buffers
without speech.

8 activations for the final layer. This layer, using a
softmax activation function, discriminates between
speech and non-speech. An Adam optimization
algorithm was used to train the network [15].

2.6 Training Data and Augmentation

The network was trained using 30866 speech spectra
and 29360 noise spectra. The validation set consisted
of 2×2822 labeled samples. Lacking sufficient train-
ing data, the dataset was augmented using the Musan
dataset [16]. Within the dataset, the Librivox speech
files and the Free-Sound noise samples were used. To
create training data more similar to the test data, the
relatively direct recordings of the dataset needed to
be placed in virtual rooms. Room impulse responses
(RIR) were created using the image method described

by Allen and Berkley [17], implemented in the RIR-
generator, provided by the International Audio Labo-
ratories Erlangen [18]. To prevent the Neural Network
from overfitting to a specific room dimension, random
room dimensions were chosen to create impulse re-
sponses of virtual rooms similar in size to a potential
application environment. For every audio file of the
dataset, room dimensions were varied from 2 m to 7 m.
Within these randomly chosen room dimensions, the
sound-source and sound-detector were randomly po-
sitioned. Once the RIR was created, a convolution
with the audio file from the dataset created a rever-
berant version of the file. This reverberant audio was
then divided into frames of 2048 samples and trans-
formed into the Log-Mel-spectrograms described in
section 2.4. The validation set consisted of 2822 spec-
trograms for speech and non-speech, respectively. The
spectrograms labeled speech in the validation set were
obtained from recordings of the virtual conference de-
scribed in section 3, using speech-only scenarios. To
obtain the maximum possible number of spectrograms
from the recordings, all individual microphone streams,
as well as the combined omnidirectional and virtual
cardioid signals, were analyzed individually and used
for training and cross validation.

2.7 Real-Time Classification

The spectral analysis described in section 2.4 requires
128 ms of audio per spectrogram. With the main track-
ing algorithm running at 48 kHz, this is equivalent to
6144 samples. To maintain the low-latency operation of
the tracking algorithm, which runs at 256 samples, clas-
sification is performed on the current audio buffer, in
combination with the 23 previous buffers. To give the
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Fig. 4: Results of the decomposed test files. Left: Only
analyzing the clean speech file results in 298
speech classifications and 53 non-speech clas-
sifications. Right: Analyzing the noise com-
ponents returns 317 non-speech classifications
and 34 speech classifications. The overall accu-
racy in this test case is 87.61 %.
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Fig. 5: Probability of a buffer containing speech, ana-
lyzed over the entire test file. As in Figure 4, the
file was decomposed in speech and non-speech
components which were analyzed individually.

current buffer a higher weight, the first max-pooling
layer is padded only on the right, thus reducing the
importance of the left-most (oldest) part of the spectro-
gram. The choice of audio stream for the classification
operation is still under investigation. The most promis-
ing choices are a virtual omnidirectional microphone

So =W (8)

and a virtual supercardioid microphone signal Sρ (p =
0.34), aimed at the detected direction of the previous
buffer θDOA:

Sρ = 0.34 ·W +0.66 · (X cosθDOA +Y sinθDOA) . (9)

The results presented in section 3 were gathered using
So. Current measurements show no performance gain5

when using the computationally more expensive Sρ .

3 Results

The tracker performance was evaluated using a multi-
channel playback system, reproducing a virtual confer-
ence scenario. The set-up was placed within a large,
acoustically untreated room6 with 8 loudspeakers ar-
ranged in two concentric rings of 1.5 m and 2.5 m
around the microphone array. One additional loud-
speaker was placed at 0.5 m distance from the array,
another at 4 m. Microphone and loudspeaker hight
were chosen to realistically match a real-world sce-
nario. While the microphone and close-range loud-
speaker were placed at the hight of a table-top (800 mm
and 700 mm, respectively), the loudspeakers placed at
1.5 m and 2.5 m distance were set to the height of the
mouth of a seated person (1240 mm and 1390 mm, re-
spectively). The distant loudspeaker was placed at the
approximate height of the mouth of a standing speaker
(1700 mm). All heights were measured from the cen-
ter of the tweeter. A prepared scenario was played
back7, consisting of male and female speech in Ger-
man and English. Additionally, a variety of non-speech
signals were played back, such as cell phone ring-tones,
moving chairs, et cetera, combined with recordings of
construction sites and office noise. The recording and
playback format of the multichannel noise recordings
were chosen to be identical. Two scenarios were played
back, once exclusively using speech signals, once con-
taining additional noise. The introduction of speech

5Measured performance gain was < 0.1%.
68.3m×8.2m×3.8m, RT 60≈ 2.3s.
7Recording and playback format: 48 kHz, 24 Bit.
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S1 S1noise S2 S2noise
accuracy gain −1.2 % −1.8 % −0.4 % −6.6 %
stability gain 1.2 % 5.4 % 2.4 % 4.2 %

Table 1: Measured performance gain when using
speech classification as part of the angular
stabilization process.

detection decreased the average accuracy by 2.5 % and
increased the angular stability by 3.3 %. Table 1 shows
increased smoothing especially in noisy environments.
To further evaluate the classifier performance, the mul-
tichannel scenario was split into speech and non-speech
components and rendered to mono-files. The classifica-
tions throughout the speech and non-speech files can be
seen in Figures 4 and 5. The sum test accuracy in this
case is 84.61 %. Because the split was performed on
the near-anechoic scenario without being played back
in the virtual conference environment, the comparison
is skewed, with both real-time application and training
being performed on reverberant signals. Additional
testing is described in section 4. Within the tracking
scenario, the addition of the CNN classifier results in
a performance boost. Increased angular stability dur-
ing speech, combined with less erratic movement in
periods without speech, improve the audio quality of
beamforming algorithms being driven by the tracked
position data. A beamformer tuned to the signals of the
array in use is described by Runow et al. [19]. Figure 6
shows the classifier-induced performance boost for a
virtual conference recording. Close sources with a high
signal to noise ratio can be tracked well without the
need of speech classification. During the second half
of the recording, the sources are played back on the
mid-range8 and far-range9 loudspeakers, with a larger
amount of ambient noise. Here, the discrimination
between speech and non-speech (desired signal and
noise) increases tracking stability. Since this test was
designed for general tracking performance evaluation,
and not for speech classification evaluation, additional
testing will be required to better assess the added con-
fidence factor. In real-time tests, a clear improvement
of speaker tracking can be observed, with office and
traffic noise, as well as structural vibration being re-
jected well beyond the level achieved when using only
the detection filter described in section 1.

8r = 2.5m
9r = 4m

4 Discussion

Because the available test data were not recorded for
the specific purpose of evaluating speech detection, ad-
ditional testing is needed to assess the full benefit of
the added confidence weighting. Initial real-time tests
indicate a considerable performance boost; quantitative
measurements are the next step. With the small amount
of training data requiring additional synthetic data, the
training and validation sets do not come from the same
data distribution. This is not ideal, but could not be pre-
vented without recording and labeling large amounts
of additional data. To ensure satisfactory generaliza-
tion of the trained net within the intended application,
most of the recorded data was used for cross valida-
tion. Initial training of the CNN indicated overfitting,
which has been countered with the use of stronger L2-
regularization [20]. This suggests that test accuracy
will profit from additional training data recorded in en-
vironments more similar to the final application. The
test environment used for evaluation was considerably
larger than the virtual rooms used for data augmenta-
tion, which were chosen to be closer to the final appli-
cation environment. A performance gain is expected
when using more realistic surroundings for further test-
ing. If the desired increase in performance is not ob-
served, additional training rounds will contain a larger
variety of virtual spaces.

5 Summary

A system for Acoustic Source Localization and Track-
ing is described, which is capable of locating and track-
ing speech sources in real-time. The main system is
set up using an algorithmic approach, with Steered Re-
sponse Power maximization as the direction-of-arrival
estimator and a series of weighting factors for variable
exponential smoothing of the detected angle. Addi-
tionally, a Convolutional Neural Network is used for
speech detection. Discrimination between speech and
non-speech events enables the system to effectively re-
ject sound sources which are not of relevance for the the
application of speaker tracking, increasing the perfor-
mance beyond that of the purely algorithmic approach.
Initial tests show high classification accuracy within
the final application, and additional data promise still
higher accuracy.
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Fig. 6: Output of tracking algorithm with and without CNN speech detection. The first half of the test file is played
back at a distance of r = 1.5m around the microphone array. At this distance, confidence weighting works
well and the speech detection has a negligible impact on performance. Towards the end of the sample,
playback distance is increased to a distance of 2.5 m to 4 m around the microphone array and the SNR is
reduced. The increased levels of non-directional reverberation and noise components considerably reduce
the tracker’s performance. Using the speech detector, a higher level of stability can be maintained.
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