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ABSTRACT

This paper presents an application-oriented approach to Acoustic Source Localization using a coincident microphone
array. Multiple processing blocks are presented to generate a reactive, yet stable Direction of Arrival estimation
tuned toward speaker tracking. Building on an energy based scanning method, individual characteristics, such as
sound field directivity and static sound source positions are used for adaptive smoothing of the detected angle. The
methods and resulting performance gain are discussed for the individual components of the algorithm. Objective
performance is evaluated using simulated and recorded data. Audio quality is assessed using listening tests, which
show a significant increase in subjective sound quality, noise suppression, and speech intelligibility when combining
the tracker with a beamforming algorithm for coincident microphone arrays.

1 Introduction

With beamformers in mobile and smart-home devices
gaining relevance, many applications focus on low-cost
linear and circular arrays for Acoustic Source Localiza-
tion (ASL) and tracking [1]. Advances in spherical ar-
ray beamforming have enabled the creation of versatile,
robust beamformers in three dimensions, often using
spherical harmonics as an orthonormal base for beam-
forming [2–7]. Beamforming for professional high
quality audio is still uncommon, as the large number of
transducers needed for higher-order beams prevents the
use of professional quality microphones [8]. Combi-
nations of shotgun microphones and adaptive spectral
beamformers have proven effective and can generate
high quality audio [9]. The downside of such micro-
phones is the need for manual, mechanical source track-
ing. Producing an audio signal of consistently high

quality is difficult and requires skilled personnel. Re-
cent research has shown that a first-order beamformer
using a coincident microphone array can produce beam
patterns similar to shotgun microphones - with a more
linear frequency response for off angle sound incidence
[10–12]. The combination of such beamformers with
an effective algorithm for ASL can produce high qual-
ity audio signals of moving sources with Directivity
Indices beyond the possibilities of classical first-order
microphones [13]. This paper presents an application-
oriented algorithm for real-time ASL using a coincident
microphone array consisting of three high-end micro-
phone capsules. The array configuration represents
a simple setup that can be transformed onto a spheri-
cal harmonic base in two dimensions and create any
beampattern expressible with spherical harmonics of
O(1) [14]. The configuration of the capsules allows
for first-order beamforming on the horizontal plane,
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presenting an acceptable and well researched solution
for many applications [15, 16]. A Steered Response
Power (SRP) approach is chosen for initial Direction
of Arrival (DOA) estimation, using virtual cardioid
microphones as a scanning beam [17].

Details about the chosen microphone configuration, the
resulting virtual microphone synthesis, and the ASL
algorithm can be found in sections 2.1 and 2.2. A
variable exponential smoothing algorithm increases the
algorithm’s angular stability, while maintaining high
sensitivity for directional changes. The basic concept
and the individual weighting factors are discussed in
section 3. Performance is evaluated using objective
error analysis and listening tests based on a set of sub-
jective quality metrics. The experimental set up is dis-
cussed in section 4 and results are presented in section
5.

2 Acoustic Source Localization

2.1 Microphone Configuration

The described system uses a microphone configuration
consisting of three high-end professional microphones.
This guarantees a known and consistent frequency re-
sponse of the individual capsules for on-axis as well as
for off-axis pick up of audio events. Uniform frequency
response for all angles is a critical requirement for high
quality broadband beamforming [18]. To optimize co-
incidence relative to the horizontal plane, the capsules
are stacked vertically, with a spacing of ≤ 30mm. The
capsules are mounted in a double-M/S configuration,
with one cardioid capsule F facing 0◦, a second car-
dioid R facing 180◦, and a bidirectional figure-of-eight
capsule B facing ±90◦. Capsule correction filters Hx
are applied for further linearization of the signals. This
step improves tracking and the beamformer’s isotropic
frequency response.

2.2 Steered Response Power ASL

Prior to ASL processing, a detection filter Hd is applied
to the linearized microphone signals. This filter is
designed to reject non-speech signals. The corrected
and filtered microphone signals can be transformed
onto the base of horizontal b-format Ambisonics [14]:

W = Flin,d +Rlin,d (1)
X = Flin,d−Rlin,d (2)
Y = Blin,d (3)

As W, X and Y represent a two-dimensional, orthonor-
mal basis, any arbitrary first-order microphone pattern
M(θ , p) can be synthesized on the horizontal plane,
using the WXY-decoded signals and

M(W,X ,Y,θ , p) = pW +(1− p)(X cosθ +Y sinθ) ,
(4)

with p representing the polar pattern shape and θ the
orientation on the horizontal plane [4, 19, 20]. The fac-
tor p can be statically set or dynamically manipulated
in a range between 0, which results in the polar pattern
of a dipole, and 1, which results in an omnidirectional
polar pattern. The most commonly used values for p in
this paper are p = 0.5, resulting in the unidirectional
polar pattern of a virtual cardioid and p = 1

3 , creating a
virtual supercardioid.

Using (4) with p = 0.5, any number nM of virtual car-
dioid microphone signals can be synthesized. The vir-
tual microphone with the highest relative Root Mean
Square (RMS) value indicates the Direction of Arrival
of the sound source:

θDOA = argmax
θi

(
M(W,X ,Y,θi)

)
, (5)

with M representing Root Mean Square of M.

3 Tracker Stabilization

The described real-time setup uses audio buffers of
256 samples, sampled at 48 kHz. Figure 5a shows the
raw directional information θDOA. The large amount of
noise in the angle detection requires additional filtering,
since beamformers using θDOA as beam orientation
perform poorly and produce strong audible artifacts.
Filtering is performed using exponential smoothing
[21]:

θ
t
s =α θ

t
DOA +(1−α)θ

t−1
s , (6)

with θ t
DOA and θ t

s representing the input and smoothed
output angle for time frame t and α ∈ (0,1] as the reac-
tivity factor. Circular continuity of the angle is ensured
within a separate function. If α is set dynamically, a
smoothing effect can be achieved that is directly con-
nected to a set of signal characteristics. In the following
paragraphs, these factors will be called Confidence In-
dices (CI) and the smoothing process will be defined
as Confidence Weighting. Figure 1 shows three charac-
teristics contributing to two stages of smoothing. The

AES 148th Convention, Vienna, Austria, 2020 May 25 – 28
Page 2 of 10



Ziegler, Paukert, Koch, and Schilling ASL & Beamforming using Coincident Microphone Arrays

F

R

B

HF
HR
HB

correction filters

Hd

detection filter

base
transform

cardioid
synthesis RMS

argmax
θ

directivity
weighting

smoothing
and 2π

wrapping

long-term
weighting

level
weighting

confidence
mixer

smoothing
and 2π

wrapping
θ

Flin,Rlin

Blin

Flin,d ,Rlin,d

Blin,d

W
X,Y

Mi(W,X ,Y,θi)

Mi(W,X ,Y,θi)

θDOA

Cl Cl
Clt

W

θDOA,Cd

θ f ast

CI

θDOA

Cd

Fig. 1: Signal flow through the tracking algorithm. After compensating for nonlinear frequency responses of
the microphones and filtering the incoming signals to a range of 200 Hz to 2000 Hz, the synthesis of
virtual cardioids over 2π and RMS-maximization of the signals results in initial DOA estimations. Various
weighting algorithms in combination with a variable exponential smoothing process create a more stable,
yet reactive tracker.

initial filtering is performed using directivity weight-
ing, a process that analyzes the level of directivity in
the detected one-dimensional sound field. The output
angle of this process θ f ast is passed on to the two fol-
lowing Confidence Weighting algorithms. A buffer
is filled with multiple cycles of θ f ast to compare the
detection angle with known source positions, which
are dynamically learned and forgotten. Aditionally,
a level weighting algorithm compares the omnidirec-
tional level of the current buffer with the average level
during speech. The Confidence Weighting processes
create a combined CI, which is in turn used for a second
filtering operation to compute the final tracker output θ .
The algorithms are described in detail in the following
sections.

3.1 Directivity Weighting

Directivity weighting uses the level of directivity within
the recorded sound field as an indicator as to whether a
given buffer contains an actual audio event. Figure 2
shows examples of buffers with high directivity (left)
and low directivity (right). The Confidence Index Cd is
obtained using the mean distance between the detected
sound field, which is normalized, so that max(Mi) = 1,
and the unidirectional level distribution U :

Ui = (0.5+0.5cos(θi−θDOA)) , (7)

C =
1

nM

nM

∑
i=1

(
Ui−Mi (W,X ,Y,θi)

)
. (8)
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Fig. 2: Directivity of two audio buffers. The levels
of 360 virtual cardioid microphones arranged
with 1◦ spacing represent the detected, one-
dimensional sound field. The closer the level
distribution is to the optimal unidirectional dis-
tribution U , the higher the confidence index Cd .
Left: Buffer with high level of directivity, Right:
Buffer with low directivity. The marking indi-
cates θ f ast for the displayed buffer. As Cd is
large for the buffer on the left, θ f ast ≈ θDOA.
For the buffer on the right, a large portion of
θ f ast is contributed by θ f ast of the previous
buffer, and not by θDOA.
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Scaling to the interval (0,1] is performed with

Cd = 10(νC), (9)

with ν > 0 representing a parameter controlling the
reactivity of the tracker. Considering that for most
cases

Mi ≥Ui , (10)

it is clear, that

C ≤ 0 and 0 <Cd ≤ 1. (11)

Using (6) and setting α = Cd , an initial direction of
arrival θ f ast can be computed. Figure 5b shows the
effect of directivity weighting compared to the raw
DOA data shown in Figure 5a.

3.2 Level Weighting

Level weighting analyzes the level of the current audio
buffer and compares it to a threshold L. The signal
used for level weighting is W . The confidence index
associated with level weighting Cl interacts directly
with long-term weighting, as shown in Figure 1. Cl is
computed as

Cl =

{
1 for W ≥ L
0 for W < L

. (12)

3.3 Long-Term Weighting

In many acoustic scenarios the speaker positions re-
main quasi-static. Participants of a meeting mostly
stay seated, a driver will remain in the driver’s seat,
etc. Long-term weighting makes use of this fact by
assessing the sound field over a longer period of time.
The initial DOA estimation θ f ast is stored in a buffer
under the condition that the level confidence index Cl is
set to 1. If Cl 6= 1, θDOA of the previous buffer is used.
An average over 50 buffers is passed to the long-term
weighting algorithm. The directional information is
then classified using a point system. Every incoming
angle is quantized with a resolution of 5◦ and results
in a point for the associated bin. The total number of
points is limited to 72, resulting in one point per 5◦

bin in the initial state. For a point to be awarded to the
most recent position, a point must be deducted from
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Fig. 3: Visualization of long-term confidence. The av-
erage detected angle θ f ast over the most current
267 ms, rounded to 5◦, results in a point for the
associated segment. As the total point count is
limited, a point is deducted from the segment
with the least recent position detection. With
72 available points, the algorithm learns a static
position within 1.5 s to 3 s and forgets an audio
event within 19 s. The point score is normalized
to 1.

the least recent DOA. This procedure creates a type of
long-term memory for the algorithm. With the param-
eters presented in this paper, the system "forgets" an
audio event after 19.2 s and can adapt to a new static
source in 1.5 s to 3 s. Figure 3 shows the point score
after processing an excerpt of Scenario I, described in
section 4. All five speaker positions listed in Table 1 are
clearly discernible. For the determination of the associ-
ated confidence index Clt , θDOA is quantized to 5◦ and
the point distribution is normalized to 1. The relative
point value at the quantized angle corresponds directly
to Clt . This comparison is performed every cycle of
the algorithm. If θDOA is within ±1◦ of a peak in the
long-term angle distribution, an additional confidence
bonus is awarded (snap-to process).

3.4 Confidence Mixing

Confidence mixing describes the process of combining
all previously described Confidence Indices in the most
effective way. Given (9), the final Confidence Index
CI can be computed using Cd ,Cl ,Clt and the mixing
parameter κ:

CI =(κ Cd +(1−κ)Cd Clt)Cl . (13)
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Fig. 4: Loudspeaker distribution for the test setup. Ten
studio monitors are placed at four distances and
varying angles around the microphone array.
The configuration is used to record dialog, noise
and ambiance for beamformer evaluation.

4 Experimental Setup

Both synthetic data and real recordings were used dur-
ing development. The subjective results in section 5.2.1
are exclusively presented using real recordings of the
setup described in subsection 4.2. Objective results are
presented using synthetic and real data.

4.1 Synthetic Data

Convolving audio data with appropriate room impulse
responses (RIR) can generate accurate simulations of
auditory scenes [22]. The synthetic data used for the re-
sults in section 5 are generated using [23]. The speech
data were randomly selected from the VCTK speech
corpus, consisting of short passages read by 109 dif-
ferent speakers [24]. Optional noise interference was
selected from the ESC50 corpus, consisting of 2000
recordings of environmental sounds [25]. The acoustic
environment was randomly sampled with room geome-
tries ranging from 3 m to 8 m and room heights of 2.5 m
to 4 m. Absorption coefficients and RT60 reverberation
times were uniformly sampled in different ranges, as
described along with the results in table 3.

4.2 Virtual Conference

ASL and tracking were evaluated on real recordings
using a reproducible multi-channel loudspeaker setup

Table 1: Speaker Positions, Scenario I

1 2 3 4 5

Angle 60 150 220 270 330

Distance 1.5 m 1.5 m 4 m 1.5 m 1.5 m

Sum Duration 7.1 s 9.0 s 4.0 s 16.0 s 8.9 s

Table 2: Speaker Positions, Scenario II

1 2 3 4

Angle 60 150 270 330

Distance 1.5 m 1.5 m 1.5 m 1.5 m

Sum Duration 24.7 s 1.0 s 22.3 s 9.1 s

consisting of eight identical Genelec 1029A loudspeak-
ers, arranged on two concentric rings around the mi-
crophone array, combined with a far-range and a close-
range loudspeaker. The microphone array was con-
structed using two Schoeps CCM 4V and one Schoeps
CCM 8, mounted within a dedicated double-M/S shock
mount. The results described in the following sections
were gathered using a RME Fireface UFX.

The angular positioning of the virtual sources is shown
in Figure 4. The audio material played back was based
on [26] and consisted of near-anechoic recordings of
male and female speech in German and English, record-
ings of office and household noise sources such as cell
phones, moving chairs, doors, etc. and multi-channel
recordings of traffic and construction noise with open
and closed windows. Three scenarios were recorded,
each with and without interference of background and
object noise. The room used for the results of this pa-
per was 8.3 m by 8.2 m, with a total height of 3.8 m.
No acoustic treatment or furniture was present, which
resulted in an RT60 of 2.31 s, averaged over the 500 Hz
and 1000 Hz frequency bands.

4.3 Listening Tests

Listening tests were performed to evaluate the impact
of different types of signal degradation prior to the
tracker design. The results are presented in [27] and
were used to prioritize during the development pro-
cess. In addition, a larger listening test was performed
using the tracker output with various beamforming al-
gorithms. A short summary of the listening test can
be seen in Table 5, detailed methods and results can
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be found in [28]. For the test, 59 test subjects were
asked to grade various sound recordings which were
recorded using the test setup described in section 4 and
processed with the tracking algorithm and a selection of
3-, 2-, and 1-channel beamformers, both commercially
available and currently under development.

5 Results

The following sections will present both subjective and
objective evaluations of the system’s performance. Ob-
jective results are presented using synthetic and real
audio data. It is important to mention that the results
are only partially comparable as the synthetic data con-
tains no speech pauses, which prevents error accumu-
lation due to Cl-driven static positions at unfavorable
angles between speech sections. Additionally, the simu-
lated data cannot make use of the long-term Confidence
Weighting as every position is randomly sampled on a
Cartesian grid.

Objective error analysis is performed using two con-
nected error metrics, θerr and ∆θerr. The angular error
θerr is computed using the circular distance between
the reference angles θ t

r and the detected angles θ t , av-
eraged over all time bins t:

θ
t
err =

{
|θ t −θ t

r | for |θ t −θ t
r | ≤ 180◦

360−|θ t −θ t
r | for |θ t −θ t

r |> 180◦
. (14)

The gradient is calculated using (14) and a two-point
calculation:

dθ
t =

θ t+1−θ t−1

2
(15)

dθ
t
r =

θ t+1
r −θ t−1

r

2
(16)

∆θ
t
err =

{
|dθ t −dθ t

r | for | · | ≤ 180
360−|dθ t −dθ t

r | otherwise
(17)

Table 4 shows the mean errors over all nT time bins:

θerr =
1

nT

nT

∑
t=1

θ
t
err (18)

∆θerr =
1

nT

nT

∑
t=1

∆θ
t
err . (19)

The error calculations shown in Table 4 are performed
on reference information which was manually labeled
using the session file of the digital audio workstation

used for the playback and recording of the test sce-
narios. The results presented in Table 3 are calculated
using the geometric parameters of every individual sim-
ulation.

Both θerr and ∆θerr represent important quality metrics
for the tracking algorithm. While accurate localiza-
tion of an acoustic source is important, stable tracking
of sources while maintaining high reactivity during
change of speakers equally influences the system’s real-
world usefulness.

Subjective quality assessments are presented using lis-
tening tests, performed on recorded audio1. The test
subjects were asked to grade the recordings with respect
to speech intelligibility, noise suppression and subjec-
tive quality for German and English test scenarios us-
ing a MUSHRA test [29]. Speech intelligibility was
additionally analyzed using the Short Time Objective
Intelligibility Index proposed in [30]. STOI compares
clean speech with processed versions of the same audio.
In this case, the clean studio recordings of the speech
used for the virtual scenarios were compared to the
recorded multi-channel playback.

5.1 Simulated Data

RT60 SNR DRR θerr ∆θerr

C <0.05 s 10.98 dB 3.17◦ 0.53◦

N <0.05 s 6.06 dB 33.65◦ 1.21◦

C 0.4 s to 0.6 s −7.20 dB 21.15◦ 0.68◦

N 0.4 s to 0.6 s 5.96 dB 31.41◦ 0.59◦

C 0.6 s to 1.5 s −9.37 dB 37.75◦ 0.63◦

N 0.6 s to 1.5 s 6.05 dB 50.92◦ 0.56◦

Table 3: ASL performance analysis on synthetic data.
Reverberation and additional noise both have
strong negative effects on ASL.

ASL performance is evaluated on six one-minute sets
of synthetic data, each containing 15 scenes of 4 s. The
six sets can be categorized into three subsets, each
containing a clean (C) and a noisy (N) simulation of the
same scenario. Within the clean sets, only speech and
the corresponding reverberation are present, the noisy

1Audio examples can be found at zieglerj.home.hdm-
stuttgart.de/aslt-companion.html.
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Fig. 5: Performance analysis of Confidence Weighting components. (a): Direct DOA estimate θDOA. (b): Added
directivity weighting results in considerably less noise in the output θ f ast . (c): Additional level-dependent
weighting reduces jumps during pauses. Long-term weighting further improves the accuracy and stability
of the tracker output θ . Solid lines represent labeled reference. The values on display were down-sampled
by a factor of 4 for increased clarity.

sets contain three additional noise sources randomly
placed within the same area as the speaker. The three
sets differ in their level of reverberation, which is given
as Direct to Reverberant Ratio (DRR) and span RT60
reverberation times from≈ 0 ms up to 1500 ms. Within
the noisy sets, the signal to noise ratio is given for the
virtual omnidirectional microphones.

Table 3 shows the results for the simulated audio data.
ASL on clean speech in near-anechoic environments
produces a mean error of 3.17◦ or approximately 1.8 %.
An additional noise source within the simulated sce-
nario increases the error by a factor of 10, mild reverber-
ation causes a similar degradation of ASL performance.
Furthermore, a clear correlation between the DRR and
the localization error can be observed.

5.2 Recorded Data

The results shown in Table 4 were created using two dif-
ferent speech scenarios. Scenario I is a 45 s office scene
in German, with one female and three different male
speakers, located at five positions around the micro-
phone. Scenario II is a 57 s dialog in English, between
a female and a male speaker, with additional comments
from two less prominently featured positions by the
same speakers. Speaker positions and speech duration
can be found in Tables 1 and 22. Pauses and overlaps

2Some sources shown in figure 4 only contained interference and
ambiance, hence they are not listed in tables 1 and 2.

were intentionally added to simulate more realistic con-
versations. Two versions of each scene were recorded.
The first version contains desired speech only. The
second version contains interference consisting of of-
fice noises, such as cell phones, ripping paper, coffee
cups and shifting chairs, being played back at 0.6 m
to 1.5 m, whispered side-conversations being played
back at 1.5 m and quadraphonic ambient recordings,
such as traffic and construction noise, played back on a
quadraphonic playback system, positioned at a radius
of 2.5 m.

Figure 5 shows a 15 s extract from Scenario I at vari-
ous steps of the signal processing chain, compared to
the reference position. Figure 5a shows θDOA, the raw
output of the virtual cardioid maximization process.
Figure 5b shows θ f ast , the fast position estimation ob-
tained using the variable exponential smoothing and
only one Confidence Index, Cd , associated with direc-
tivity weighting. It can be seen that this step greatly
reduces θerr and ∆θerr. For this reason, θ f ast is used
throughout the processing chain as a good initial guess
for θ . Figure 5c shows the additional improvement
realized through the use of the algorithms described in
section 3. While the values for θerr are large, it is worth
noting that the calculation is performed over the entire
recording. Pauses between words and phrases were
not removed during evaluation. This operation would
require a subjective threshold of pauses and seemed
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German German (noisy) English English (noisy)
θerr ∆θerr θerr ∆θerr θerr ∆θerr θerr ∆θerr

θDOA 46.18 24.67 52.59 23.86 46.24 23.19 45.44 22.73
+Cd 13.53 1.96 22.25 1.88 14.97 2.07 15.02 1.95
+Clt 11.20 0.97 17.84 0.96 11.55 1.24 12.27 1.20
+Cl 12.08 0.84 17.90 0.93 11.54 1.23 12.30 1.19

+snap 12.41 0.85 18.00 0.93 11.58 1.23 12.29 1.19
∆SC −0.08 dB −0.16 dB −0.07 dB −0.08 dB

Table 4: Tracker Performance Analysis on recorded audio. Adding Confidence Weighting components improves
the performance. While Cd globally improves stability and accuracy, other Confidence Indices show a
more situation-dependent behavior.

omni beamformers
Speech

Intelligibility 0.23±0.12 0.61±0.16

Noise
Suppression 0.16±0.12 0.52±0.19

Subjective
Quality 0.19±0.12 0.65±0.22

Table 5: Listening Test Results. In all categories
the beamformed signal is preferred over the
omnidirectional baseline. The mean result
and pooled standard deviation over all tested
beamformers are presented.

arbitrary and situation-dependent3. For the calculation
of ∆θerr, the pauses between labeled clips were addi-
tionally filled with the last available reference position
of the preceding audio clip. This reflects the fact that a
passive behavior of the tracker is desired during speech
pauses.

5.2.1 Listening Tests

Regardless which beamformer is used, the signal
outperforms that of a virtual omnidirectional micro-
phone Flin +Rlin. Even a simple gradient synthesis
beamformer creating a virtual supercardioid facing the
tracked direction θ provides improved intelligibility,
noise reduction and subjective quality, compared to the
omnidirectional signal. Once confidence weighting is
applied, the tracked supercardioid performs without

3Ex: calculating the error for θDOA +Cd in Scenario I (German)
using only buffers with an rms larger than 20 % of the mean rms of
the recording results in an error θerr of 10.06◦. This equals a perfor-
mance increase of 24.8 % when only examining frames subjectively
deemed relevant.

any audible artifacts.

Table 5 shows the summarized results of a lis-
tening test performed with 59 test subjects. Possible
scores in the categories Speech Intelligibility, Noise
Suppression, and Subjective Quality range from zero
to one. On average, the use of the tracking algorithm
in combination with a beamformer improves Speech
Intelligibility by 170 %, Noise Suppression by 225 %
and Subjective Quality by 256 %, compared to the
signal of a static omnidirectional microphone of equal
quality. Detailed results can be found in [28].

5.2.2 Speech Intelligibility

The Short Term Objective Intelligibility was calculated
by comparing the dry voice recordings from the test
scenarios with the signal of a virtual omnidirectional
microphone and of a virtual supercardioid microphone
synthesized towards the tracked angle θ , combined
with various beamforming algorithms. The use of a vir-
tual omnidirectional microphone results in an average
STOI of 0.593, while a virtual, tracked supercardioid
produces a STOI of 0.744 and all beamformers used
in the test produce a mean STOI of 0.745, a 26 % im-
provement to the virtual omnidirectional signal.

6 Discussion

The overall effect of the various Confidence Indices
depends on the application scenario. While directiv-
ity weighting universally improves ASL performance,
long term smoothing and position snapping improve
performance in static environments such as meetings.
The results in Table 4 reflect the mean errors in the four
described scenarios. The last row of data provides in-
sight into the performance of a first-order supercardioid
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beamformer driven with the tracker output. On average,
the level of the target signal deviates by 0.1 dB from the
reference value. This is well below the threshold of just-
noticeable amplitude difference measured by Zwicker
and Fastl for common SPL [31]. The STOI measure-
ments presented in section 5.2.2 show that the objective
difference between a static omnidirectional signal and
a simple first-order beamformer is significantly larger
than the improvement gained by the introduction of
more complex beamforming algorithms. This is, in
part, due to the focus of STOI. For further investiga-
tions, a testing algorithm with stronger focus on high
quality audio will be selected.

7 Conclusion

The described system for acoustic source localization
and tracking provides real-time Direction of Arrival
information for coincident beamforming. A set of pro-
cessing blocks is introduced to provide application-
specific improvement over the direct output of energy
based scanning methods, resulting in a more accu-
rate and stable DOA-detection. Listening tests show
a strong increase in speech intelligibility, noise sup-
pression and subjective quality, when comparing the
combination of tracker and beamformer with static mi-
crophone signals. When using a simple synthesized
supercardioid driven by the tracker, the resulting signal
is not subjectively discernible from a signal based on
the reference position as input. The algorithm gener-
ates artifact-free audio and makes the system suitable
for professional audio production applications as well
as high-end conferencing and on-set recording.
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