

3D DATA
TRANSFER GAME

JAM
Report on an international interdisciplinary

workshop on the transfer of Rhino 3D files into
games.

ABSTRACT
Modern game engines such as Unity or Unreal
enable rapid 3D prototyping and are currently
changing the way analogue products are
designed and perceived. Game Engines,
however, require a higher level of visual accuracy
than is typically provided by packages commonly
used in the 3D visualisation industry such as
Rhino 3D. In this paper we report on an
interdisciplinary international student exchange
project which took place in the winter semester
2021/22. The goal of the exchange was to foster
interdisciplinary projects and skill transfer among
design and computer science and media
students. The goal was to use existing Rhino 3D
project files as source data for game productions.
The results, five games and detailed discussions
of opportunities and challenges phased during
data transfer from Rhino 3D to gamed engines,
are outlined in this paper.

AUTHORS:

SABIHA GHELLAL PH.D. (HOCHSCHULE DER MEDIEN) –
PROFESSOR FOR EXPERIENCE & GAME DESIGN

CLAUDE SAOS (LISAA: L'INSTITUT SUPÉRIEUR DES ARTS
APPLIQUÉS) - HEAD OF INTERIOR ARCHITECTURE AND
DESIGN DEPARTMENT

STUDENTS NAMES ARE ASSIGNED TO EACH PROJECT

PORJECT VIDEO REPORT:
https://www.hdm-stuttgart.de/mediathek/projectpage/3847/details

Introduction
Modern game engines such as Unity or Unreal
enable rapid 3D prototyping and are currently
changing the way analogue products are designed
and perceived. The use of game engines by
designers and engineers began with the shift from
analogue to digital prototypes. Whether in consumer
products, automotive, or architecture, engineers are
increasingly relying on 3D models instead of
physical models for product development and
design decisions. Game Engines, however, require
a higher level of visual accuracy than is typically
provided by packages commonly used in the 3D
visualization industry such as Rhino 3D1. Editing in
game engines, usually based on polygon and mesh-
based models, is not a required skill for designers
using parametric CAD software. In the past, the
steep learning curve kept many CAD users from
venturing into Unity or Unreal Engine, the current
two leading game engines. As game engine
manufacturers have moved into new markets, they
have begun to incorporate additional features for
specific applications and industries, making product
or even production design with game engines
accessible. Today, game engine features such as
“Unity Forma2” or “Unreal HMI3” allow engineers and
designers to take advantage of rich game
development tools without having to learn the code
and lingo of game development.

In order to facilitate the changing requirements in 3D
visualization it would be possible to simply change
tools, and start teaching Unity or Unreal for 3D
visualizations instead of Rhino 3D to students and
practitioner accordingly. However, without looking
into the specific industry requirements and specific
features of the tools currently used in the industry
this may be a premature decision. Therefore, we
organized an international and interdisciplinary
project dealing with data transfer and management
between different tools and invited 18 students with
skills in 3D design and game engine development.

Game Jam and Projects
In order to facilitate and enable praxis-based
education and provide essential future perspective
for the education of our students, we organised a
series of workshops and “Data Transfer Game Jam”.
In this international and interdisciplinary project, the
one-week "Data Transfer Game Jam" took place as
part of a Master's course in Computer Science and
Media at the Hochschule der Medien (HdM) together
with the art academy LISAA (L'Institut Supérieur des
Arts Appliqués). In preparation for the Game Jam,

1 https://www.rhino3d.com
2 https://unity.com/de/products/unity-forma

there were three keynote presentations and
workshops on game design, 3D design and game
development using game engines. The goal of the
"Data Transfer Game Jam" was to design and
implement 5 Rhinoceros 3D CAD projects as
games. We left it up to the interdisciplinary teams to
decide what games they want to develop. The task
of the computer science and media master students
was however not only to participate in the design
and implementation of the games, but also to pay
special attention to the data transfer and data
management. The curses selected for this
interdisciplinary project included bachelor program
lecture Interior Architecture & Design from LISAA
and a master program lecture game
design/development from Hochschule der Medien.
This paper describes the five projects and the
necessary data management and data transfer.

Curriculum Integration
The focus of the interdisciplinary praxis-based
lectures was the understanding, integration,
deepening and development of 3D games. This
included the analysis of existing 3D data and
matching games, conceptualization of game design
ideas based on the previously completed analysis,
realization of game design concepts and
development with game engines. On a more
practical level the focus of the workshop and game
jam was to get to know the tools used in the two
different industries and work together to transfer
data from Rhino 3D to commercially available and
for educational purposes free of use game engines.

To facilitate interdisciplinary exchange, we asked
students to work with existing designs developed by
LISAA students in a previous semester, rather than
producing all content collaboratively. The goal was
to allow students to focus on data transfer and
preparation rather than content production, with, for
example, game art for game development. In
addition, HdM master's students were assigned to
teach LISAA students basic game engine
programming skills and to investigate and document
the various data transfer requirements described in
this paper.

Realised Projects
Five projects will be presented by the involved
students. “Escapers” a first-person puzzle, “Palma”
a three-dimensional real-time mobile strategy game,
“Starsphere” a mobile tilting game, “Save the Bees”
a tower defence game and “Desert” a first-person
exploration game with puzzle elements.

3 https://www.unrealengine.com/en-US/hmi

Escapers
Manuel Fankhänle (HdM),Christof Schwarzenberger
(HdM), Timothèe Guyot (LISAA), Yassine Fellah
(LISAA), Recep Dogan (LISAA)

Figure 1 First Person Puzzle Exit Game

Escapers is a first-person puzzle PC exit game
(Figure 4) that has since been exported as a virtual
reality game and was exhibited at the Game Zone of
the 29th International Festival of Animated Film in
Stuttgart, Germany. The challenges associated with
a first-person real-time 3D game differed from some
of the other projects developed under this initiative.
Since the player was required to enter the 3D
building in order to find an exit. Therefore, LISAA
students had to provide additional models for the
game, including furniture and other interior design
elements. The original architectural idea of the 3D
design exercise was to create a utopian building, a
kind of brutalist architectural maze, see figure 5.

Figure 2 The original architectural Concept

Rhino 3D can be used to create, edit, render and
animate polygon meshes. This allows to generate

4 https://www.blender.org

detailed models with a high complexity. However,
transferring data for the purpose of real-time use in
a game presented some challenges, which we will
explain below.

Escapers Data Transfer
As a first step we transferred all 3D Data into
Blender4 files. Blender is a free and open source 3D
application used for modelling, rigging, rendering,
animation, simulation, motion tracking and allows for
low poly options often necessary for game and other
real time content creation. The Blender files where
then imported in the game engine Unity5. Unity is a
development environment which can be used to
create and program interactive and three-
dimensional games for multiple platforms. Figure 6
illustrates the data transfer necessary to create a 3D
first person interactive experience in a game engine.

Figure 3. Data Transfer

Firsts of all, it was noticeable that translations and
transformations of faces, edges and vertices
manipulated the 3D meshes in an unexpected way.
Duplicate vertices and disjointed faces became
visible. In a demonstration in Rhino 3D, the designer
showed how models were created. Here the
designers did not use a single mesh to transform the
target shape. They used multiple meshes that added
to the original mesh or cut recesses in it. This
resulted in multiple vertices and faces that did not
belong together due to the unconnected meshes
used in the modelling process. The first step in

5 https://unity.com/de

solving this challenge was to split the individual
rooms and non-contiguous models into separate
models. To fix the issue with the duplicate vertices,
the ones that are in the same position were merged.
However, this resulted in problems with the shading
of the model. In Blender, the "Auto Smooth" feature
takes care of fixing the shading artefact.

Another challenge was the high complexity of the
models. The designers used the “Split Edge” feature
in Rhino 3D to smooth edges of the meshes which
led to a high number of vertices and polygons. This
is unfavourable in game development because the
models have to be rendered in real-time. Since the
individual vertices have to be calculated later, more
complex models lead to a higher computational
effort. To reduce complexity, close vertices were
merged and shading issues were fixed with “Auto
Smooth”, as in the shading problem. Blender
provides smoothing features that do not actually
modify the object’s geometry. It changes the way the
shading is calculated across the surfaces (normals
will be interpolated), giving the illusion of a smooth
surface 6.

The model still had many vertices that did not
contribute to the structure. To remove these, the
“Remesh” and “Retopology” tools were used in
Blender. Remeshing is a technique that
automatically rebuilds the geometry with a more
uniform topology7. Retopology is the process of
simplifying the topology of a mesh to make it cleaner
and easier to work with. Through the designers'
demonstration of Rhino 3D, it is clear that there is
less focus on geometric layouts or accuracy. The
tool was used more for visualizations that focus on
design intent.

The last problem was some artistic liberties taken by
the designers. The abstract design of the building
had to be explorable by the player later and work in
the game. For this, all rooms had to be made
accessible, game areas had to be limited (e.g. stairs
leading into the void) and doors had to be inserted.
To prevent the player from falling through floors or
running through walls in the game, collision boxes
were needed. Therefore, all floors, roofs and walls
had to be remodelled with simple box shapes. The
collisions of the complex mesh could not have been
calculated in real time. All boxes were stored in a
separate collection.

6https://docs.blender.org/manual/en/latest/scene_layout/object/editing/shading
.html
7 https://docs.blender.org/manual/en/latest/modeling/meshes/retopology.html

At this point the clean-up process of the model in
Blender was completed. The clean version of the
house was then “UV-Unwrapped”. This process is
necessary to assign textures to the faces of the
mesh later8. There were three different UV-maps.
One for the transparent glass, one for the wood parts
and the last one for the concrete parts. The final step
in Blender was to export the fbx and save the file for
Unity.

The fbx was then imported into Substance Painter.
There, the model was baked and textured. The
textures were saved in 4K resolution. In Unity, the
blend file was imported, as later changes could be
applied directly from Blender. The textures created
in Substance were used to give the materials the
right look. The final step was to apply collisions to
the collision boxes and place the house in the scene.

Palma
Niels Keller (HdM), Kevin Waldenmaier (HdM)
Agathe Mathis (LISAA), Sarah Sissani (LISAA)

Figure 4 – An abstract architecture turned into a three-
dimensional real-time strategy game

In Palma (figure 1) a three-dimensional real-time
strategy game for mobile devices, players have to
defend their base against robot opponents. To win
the game the player needs to build towers of
different types. Each tower will help defeating the
enemies in different ways, including bullets, slowing
down the robots or applying Areas of Effect (AoE) to
damage enemies. By defeating an enemy, the
player earns points which can be spent for
upgrading towers or to build new ones.

Palma Data Transfer
The mobile tower defence game Palma is based on
the architectural exercise designed as part of the
lecture 3d infography at LISAA (L'Institut Supérieur

8https://docs.blender.org/manual/en/2.79/editors/uv_image/uv/editing/unwrap
ping/introduction.html#about-uvs

des Arts Appliqués). The idea of the abstract
building is based on a utopic architecture resembling
a flower with its petals and pistil. The petals function
as energy collectors to power the central sphere
which is the housing unit., see figure 2.

Figure 5 Palma 3D Model in Rhino 3D

The game was programmed with the Unreal Engine
4.27. The main data transfer challenge in this project
was the maximum number of polygons to be
displayed on mobile devices. Since the tower is used
several times in a tower defence game, the number
of polygons plays a much greater role and has to be
optimized to ensure a smooth performance. In order
to simplify the placement of objects in the scene, as
well as possible animations, the correct positioning
of the pivot point is essential. In our case, the optimal
point for the towers was in the middle of the base of
the model. For the robot opponents, on the other
hand, the optimal pivot point is in the centre of mass,
as this is the only way to ensure smooth rotation of
the base sphere. Figure 3 illustrates the Data
Transfer.

Figure 6 - Palma Data Management

The objects were exported as FBX format from
Rhino to allow easy integration into Unreal. In
Unreal, the individual components of the objects
were combined into a static mesh. This method has

the disadvantage that the material slots are still
assigned to the individual components and thus
redundant materials are applied to the object. This
increases the number of draw calls, which is
detrimental to performance, especially on mobile
devices. Since the required performance margin
was available, this solution was chosen despite its
challenges due to the simpler workflow.

Various modelling paradigms were used in the
project. These include "Constructive Solid
Geometry" (CSG) and "Polygon-Mesh". The latter is
to be preferred for real-time applications. Since the
final object can consist of several individual
components with closed geometry in models created
using the CSG method, there are unnecessarily
many invisible surfaces, which increase the number
of polygons and thus harm performance.

Starsphere
Sven Kirsch (HdM)
Léa Hatil (LISAA)

Figure 7 Starsphere a mobile platformer

With Starsphere the goal was to create a game with
a spherical world as its base. The player should be
able to walk on the sphere in every direction and
must collect stars to win the game. The Player has
to be careful not to fall into “space-holes” which are
scattered all over the sphere. To achieve this, the
player is able to use a jetpack to jump over small
holes or onto elevations. But the jetpack has limited
power so the player is forced to find a place to rest
and recharge.

The goal of our project was to design a mobile game
that uses the orientation (tilting) of the smartphone
as an input modality. The number of polygons for a
mobile device and how they are displayed differ from
desktop applications. All object where created in
Rhino 3D with the purpose of creating a utopian
architecture using the codes of the moucharabieh
that can be found in the architecture of the Arab
world, see figure 8. The original purpose was never
to interact with the 3D objects using a mobile device.
As such the need for data transfer for this project

was driven by the special requirements for mobile
games.

Figure 8 The Rhino 3D Model

Starsphere Data Transfer
To be able to use the objects from Rhino in another
programs, they had to be exported to a more
universal format. Fortunately, Rhino supports the fbx
format, a format supported by most game
development tools. The only problem was that Rhino
does not necessarily create polygons like other
modelling programs while exporting. For example,
an absolute flat and rectangular surface could be
represented by only 2 triangles.

Rhino, on the other hand, sometimes splits those to
fix this problem, we decided to first import the fbx file
into Blender and merge all the divided faces and
recombine the objects. Also, Rhino may not
recognize the normals of the faces correctly and
they need to be mirrored.

Figure 9 illustrates the Data Transfer for the
Starsphere project.

Figure 9 Strashere Data Transfer

After creating the object in Rhino and fixing it in
Blender the object could be imported into Unity.
Because the object didn’t have any textures at this
time, it was imported into Cinema 4D first to create
the textures. For the game it was decided early on
that it should be a low poly style. After the models
have been created, cleaned up and textured they
could be finally imported into Unity. In Unity the last
step was to create the collision boxes for the
objects. This is necessary because it is a huge
waste of performance when resources in the final
game have mesh collider which are perfectly
representing object. A good option is to use
primitive colliders as much as possible. This is

especially true for developing mobile games with
alternative input modalities like orientation to allow
tilting.

Save the Bees
Tina Truong (HdM), Simo Rodbl (HdM), Sarah Lamarque
(LISAA)Sophie Schwarz (LISAA)

Figure 11 Tower Defence Game Save the Bees

Save the Bees (Figure 11) is a tower defence game
developed in Unity, intended for web and mobile.
The player's role is to protect a beehive from evil
spiders. For this purpose, the player buys flowers
with honey to increase the bee population in
strategic locations in order to strengthen the
defence. If the hive is destroyed because too many
spiders reach it, the game is lost. The player wins if
the hive has not been destroyed before all the
spiders have passed or have been defeated. The
units and environments are rendered in 3D, but the
game itself is limited to a static top-down view. The
orthographic camera uses a 60° angle to simplify
control while still showing more than one side of the
model. Since the graphic style is meant to be cute
and cartoony, the models and colors are deliberately
kept simple.

The original project, figure 12 is based on a multiple
and individual habitat taking up the alveolar forms of
the beehive, thus elaborating an infinite variety of
formal proposals to recreate a community ensemble.

Figure 12 Rhino 3D Model

Save the Bees Data Transfer
The biggest initial question was how to best get the
models from Rhino into Unity. Both Rhino and Unity
have a number of commonly supported

export/import formats, such as .obj and .fbx. First,
we decided to do research on potentially already
existing solutions for Rhino’s default export format
as we anticipated some problems occurring with
non-default exports.

“Unity Reflect” is a Unity product explicitly aimed at
making architectural visualizations work in Unity9. It
also explicitly includes support for Rhino files10.
Reflect comes in two forms, “Reflect Review” and
“Reflect Develop”. The former is intended to be used
as an end product, allowing architects to showcase
their models in a viewer application. The latter allows
developers to further tweak this viewer application to
fit their own needs. We've assessed “Reflect
Develop” with a trial account but found out that the
work required to tweak the viewer application would
be outside the scope of development work feasible
for our team size and time frame.

We've also looked at potential open-source projects,
of which we found one named “Unify” that aimed to
“create a streamlined pipeline from Rhino to Unity”11.
This would be done in a way similar to how Unity
handles proprietary formats in that a converter is
written which turns custom formats into formats
recognized by Unity - in this case, turning a Rhino
file into an equivalent .obj file. Sadly, the project
appears to be abandoned and incomplete and thus
unusable for our purposes.

After discussing our problems with the other groups
and keeping the limited time frame in mind, we
decided to settle on .fbx as an export format, as it
seemed to promise the quickest solution with the
highest chance of success.

Importing .fbx into Unity revealed faulty geometry,
missing materials, meshes that were unnecessarily
dense and thus had a detrimental performance
impact, misplaced object origin points and the
unwanted inclusion of usually excluded scene
objects such as cameras and lights. None of these
were issues the LISAA students were aware of or
had encountered when using Rhino before. This
resulted in a steep learning curve and lots of
setbacks throughout the week, as not all of the
problems were recognized from the start and many
required a thorough trial and error process

In detail, faulty geometry meant that meshes had
normal in wrong directions and intersecting
geometry, both of which produced unwanted visual
artefacts. As Rhino offered no concrete options to

9 https://unity.com/de/products/unity-reflect
10 https://unity.com/de/pages/unity-reflect-rhino

solve these issues before export, our team tried to
address them afterwards as best as we could. One
solution would have been to fix up the models in one
of the typically used applications for 3D game
production, such as Blender or the Autodesk product
family. Given our team size and the unfamiliarity of
the LISAA students with these tools, this was
infeasible to do in the given time span. Instead we
chose to conceal and hide these issues as best as
we could with clever placement inside our game
scene. On the flip side, the issues with unwanted
objects and origin points were possible to be fixed
both before and after export in Rhino and Unity
respectively and were mostly related to LISAA
students’ inexperience with creating assets for
games. In a similar vein, materials were simply
recreated in Unity and assigned to the models,
which - while being an unfortunate extra step -
solved the issue of missing materials.

The biggest issue that remained unsolved was the
mesh density, as our project’s target platforms had
potentially very limited computing resources which
clashed with the high vertex count. Even on PC we
encountered slowdowns into single-digit FPS.
Therefore, we had to drastically reduce the number
of objects placed in our scene. A potential solution
could have been a mesh simplification step, which
other game engines such as Unreal and other
creation tools such as Blender would both have
supported. As we had already done substantial
work, an engine switch was out of question at the
time those problems were encountered. As outlined
before, the use of other creation tools was also
infeasible given the unfamiliarity with the tools and
the limited time frame. Though numerous, none of
the issues were big enough of a hurdle to prevent us
from making a game. As such, we would still
consider the week a success in incorporating
architectural workflows into a game pipeline. We are
confident in saying that given enough time, the
existing issues could have been solved in a more
optimal way, providing a viable pipeline for bigger
productions.

In the Desert

11 https://github.com/lelandjobson/Unify

Vanessa Voge (HdM) Lisa Staehlè (LiSAA), Coline
Thomann (LiSAA)

Figure 13 Rhino 3D Exercise

In the Desert (Figure 13) is a first as well as third-
person exploration game with puzzle elements. It is
up to the player from which perspective he or she
wants to navigate through a remote island in the
middle of a seemingly endless sea. The first-person
perspective however is part of the main mechanic of
the game: on pressing the left mouse button, a
stencil overlay will appear. For simplicity basic
geometric forms such as a triangles and rectangles
were chosen. In order to fulfil the primary objective
of climbing up the tower, the player needs to find the
corresponding symbol within the environment. In
concrete terms: two neighbouring palms intersect in
a way that they can be viewed as a triangle. If the
player looks at this from the correct perspective,
fitting the stencil with what is behind it, they will be
able to solve the puzzle.

For the project “In the Desert” a group of LISAA
students have created two abstract, tower-like
structures floating above the water near an island
coast. This set of a desert island amidst a great
ocean has been carried into the game, with the taller
tower being accessible through a bridge. The towers
were created using the modelling software Rhino
3D.

Since the students wanted to lay emphasis on the
look of the environment and due to the availability of
various high-quality assets suitable for world
building, the Unreal Engine 4 was chosen for game
development.

In the Desert Data Transfer
Figure 14 illustrates the workflow of incorporating
the 3D models from Rhino 3D into the game scene
in Unreal Engine.

Figure 14 Data transfer workflow

Since the game engine requires 3D models to be in
.fbx format, they had to be exported accordingly.
After importing them into the Unreal Engine, it
became obvious that based on the various roundish
parts of the towers, the triangle count was very high.
In terms of a game development approach, it is
recommended to keep the triangle count low to
ensure good performance. Thus, the models were
re-exported with a lower triangle setting in Rhino.
However, while drawing samples of the tower parts
within the game engine, the triangle count did not
seem to decrease remarkably. As the game was not
intended to run on mobile, the reduction of triangles
wasn’t as urgent as for other projects and with the
little time in mind, the group carried on. The 3D
models were imported as a collection of submeshes
that piece together the respective tower in the game
scene. Each submesh is handled as a single object
in the game engine, which allows for individual
changes of certain parts, but can make the world
outliner (where every object in the level is shown in
a list) confusing.

What became apparent early on would turn out as
the main issue of the Rhino 3D to Unreal Engine
workflow: the pivot. Every submesh was relatively in
the right place, but since initially both towers were
placed together in the Rhino scene, the pivot lay
between them. They were exported individually, but
kept the askew pivot. This made any transformation
very difficult, especially rotations. Numerous
attempts of fixing the pivot in Rhino 3D did not solve
the issue, thus a workaround in the game engine
was used. To pool the submeshes into a new, single
mesh or grouping them for once cleaned up the
world outliner and somewhat simplified
transformations of the model, as a new centered
pivot is set by default. However, this proved to be
unreliable in some instances, as the pivot would

sometimes jump back into unfavourable places,
making the whole process of placing the models into
the scene quite time-consuming. Thus, a proposal
for further likewise projects would be to better
prepare the students to game development-friendly
3D modelling (fewer triangles, centered pivot).

Originally, the towers were hollow, so several
iterations were required for the player to be able to
enter and climb up the taller tower. Bit by bit, a door
arch, floors and stairs (inside and outside) were
added, as well as the adjustment of sizes. Smaller
corrections were made preferably in the game
engine itself to prevent unnecessary hassles with
the pivot.

Another step in the pipeline was to add collision to
relevant parts of the tower. In the import process of
the Unreal Engine automatic collision can be
enabled, but due to the complexity of the tower
model, this led to it being inaccessible. This feature
only turned out to be useful for the stairs that were
handled independently from the overarching model.
To add collision to the remaining parts, they had to
be edited one by one in Unreal’s Static Mesh Editor.
That’s why grouping the submeshes first, then
merging them into a single mesh once the collision
has been set, turned out to be a good approach. In
respect of the mesh complexity, with the tower
consisting of many crescent-shaped forms, some
parameters of the Auto Convex Collision had to be
adjusted. This resulted in collision meshes with more
vertices, which can affect performance if being
overdone.

If the tower would have been multi-colored, it could
have led to more problems, as the import log would
throw warnings about missing smoothing group
information of some parts or about degenerate
tangent bases, nearly zero normals, tangents and bi-
normals. All of these could lead to issues such as
incorrect shading. The emitting glowing material was
created in the game engine’s Material Editor, since
the developer had foreknowledge on how to realize
this quick and easy. The diamond, which has to be
collected at the very top of the tower, threw errors
and failed to import. This was caused by the
translucent material, which too was created in Rhino
3D. After some attempts to fix this issue, the game
engine would still file the same error message, that
is unable to triangulate the mesh. Eventually, the
diamond was imported with the white base material,
while a new translucent material was created in the
Material Editor. This was applied to the diamond,
resulting in the desired look of a red, reflective gem.

Conclusion
Collaborating in an interdisciplinary and international
program to challenge and discuss new
developments in the 3D product design turned out to
be an interesting and very productive endeavour.
Focusing on transferring an architectural exercise
into a game turned out to not only provide a suitable
goal for students to explore but also helped to foster
interdisciplinary exchange among the students and
the involved faculty alike.

The necessary workflow to transfer data from Rhino
3d to Unity or the Unreal Game Engines became
apparent. Particularly the difference of 3D data
requirements for real time interaction such as games
and 3d visualization purposes only, became very
apparent. Particularly for the students who created
games that allowed a player to enter architectural
structures, such as was the case in the project of
“Escapers” and “In the Dessert”. Other project used
the architectural structures as inspiration such as
“Save the Bees” also encountered the issues with
multiple 3D Mashed in Rhino but were able to deal
with them differently or did not encounter the issue
because the building was not imported directly as
was the case in the “Palma” project. “Palma”
“Starsphere” had the added challenge of optimizing
the number of polygons for mobile devices.

The involved computer science and media students
involved in the project learned not only how to work
in interdisciplinary and international teams but also
how design students work in 3D while focusing on
the overall aesthetic and visualization of the idea.
Due to their double role as tutors and game engine
programmers the HdM students learned how to
emphasis with the design students and focus on the
data transfer which is a state-of-the-art problem that
a lot of industries face while transitioning to game
engines for real time interactive solutions, such as
the car or virtual video productions industries.

In addition to being able to work in an
interdisciplinary and international way, LISAA
students learned about the difference between
modelling for industrial design, very detailed, high-
poly modelling, to produce photorealistic visuals,
plans, prototypes and modelling for games. They
also discovered the game design system through
the integration in game engines.

Acknowledgements
We would like to thank the International Office of the
Hochschule der Medien, especially Martine
Schumacher, the LISAA International Office,
especially Leila Menard and Benjamin Walker,

Director of LISAA Strasbourg. And to all the
participating students who took part in this
experimental project.

References:

[1] Barr, C. (2018). Real-time CAD Visualization with
Unreal Studio . Von
Autodesk: https://www.autodesk.com/autodesk-
university/de/forge-content/au_class-
urn%3Aadsk.content%3Acontent%3Ad505fbe6-
6480-4fc4-8121-22e2905a1808 abgerufen

[2] Beller, M. (2015). Herausforderung Produkt
Konfigurator (Teil 1): Anforderungen an
Fahrzeugkonfiguratoren. Von
doubleslash: https://blog.doubleslash.de/herausforder
ung-produkt-konfigurator-teil-1-anforderungen-an-
fahrzeugkonfiguratoren/ abgerufen

[3] CAD Deutschland. (2020). Was ist CAD? - Zurück zu
den Grundlagen . Von CAD Deutschland: https://cad-
deutschland.de/news/371895 abgerufen

[4] Eberly, D. H. (2006). 3D Game Engine Design - A
pratical approach to real-time computer graphics
(second edition). Burlington, Massachusetts: Morgan
Kaufmann Publishers.

[5] Ebner, M. (2020). Virtual Trends: BMW und Epic
Games feiern langjährige technologische
Partnerschaft. Von BMW
Group: https://www.press.bmwgroup.com/austria/arti
cle/detail/T0321390DE/virtual-trends:-bmw-und-epic-
games-feiern-langjaehrige-technologische-
partnerschaft?language=de abgerufen

[6] Frauenhofer IOSB. (2018). Digitaler Zwilling - das
Schlüsselkonzept für Industrie 4.0. Von
Frauenhofer: https://www.iosb.fraunhofer.de/de/gesc
haeftsfelder/automatisierung-
digitalisierung/anwendungsfelder/digitaler-
zwilling.html abgerufen

[7] Gillies, C. (2021). Game Engines in der
Fahrzeugentwicklung. Von Porsche
Newsroom: https://newsroom.porsche.com/de/2021/i
nnovation/porsche-engineering-game-engines-
software-23340.html abgerufen

[8] Gregory, J. (2014). Game Engine Architecture -
Second Edition, S. 11-13. Boca Raton, Florida: CRC
Press.

