
Copyright

The data in this document may not be altered or amended without special notification from ETAS GmbH.
ETAS GmbH undertakes no further obligation in relation to this document.
Under no circumstances may any part of this document be copied, reproduced, transmitted, stored in a
retrieval system or translated into another language without the expressed permission of ETAS GmbH.
© Copyright 2004 ETAS GmbH, Stuttgart
The names and designations used in this document are trademarks or brands belonging to the respective
owners.

Template: OsciVerifier Version: V1.0 Date of Issue: 17.02.2006

OsciVerifier
- A prototype to automatically verify the content -

of MDA oscilloscopes

Tutors:

Thomas Gemmi (ETAS)

Prof. Dr. Johannes Maucher (HdM)

Thomas Suchy (HdM)

2/17/2006 9:29 AM Page 2 of 27

 OsciVerifier

Document Meta Data:

Document Name: OsciVerifier
Document Version: see modification protocol
Owner: Martin Kemkemer & Alexander Stindl
Project number: -
Classification Public
Status: Released

Filing:

Path and Filename: https://version.mi.hdm-
stuttgart.de/svn/OsciVerifier/trunk/Documentation/OsciVerifier_Documentation.doc

Save Number 1575
Creation Date 13.02.2006
Date of Last Save 2/17/2006 9:29 AM
Last Version Saved By: Alexander Stindl

Modification protocol:

Document
Version

Author Date Content (Detailed Modification Protocol)

0.0 Martin Kemkemer
& Alexander Stindl

13.02.2006 First version.

1.0 Alexander Stindl 17.02.2006 Review

Open Issues and Pending Decisions (closed issues may be deleted):

OI What responsible

2/17/2006 9:29 AM Page 3 of 27

 OsciVerifier

Table of Contents

1 Introduction ... 5
1.1 ETAS 5
1.2 System Test ... 5
1.3 Measure Data Analyzer (MDA).. 6
1.4 The Problem.. 7
1.5 Requirements .. 8

2 Project Management .. 9
2.1 Project Plan ... 10
2.2 Milestone presentations... 12
2.3 Repository Structure of OsciVerifier .. 13

3 Analysis & Specification ... 14
3.1 Input information .. 14
3.2 OsciVerifer startup.. 15
3.3 Logging & Reporting .. 15

4 Design.. 16
4.1 The method ... 16
4.2 A way towards implementation... 18

4.2.1 Use Case Diagram ... 18
4.2.2 State Machine Diagram.. 20
4.2.3 Activity Diagram ... 21
4.2.4 Class Diagram.. 22

5 Implementation.. 24
5.1 Identifying... 24
5.2 Generating... 25
5.3 Verifying ... 25
5.4 Back tracking of failures ... 26

6 Conclusion... 27

2/17/2006 9:29 AM Page 4 of 27

 OsciVerifier

List of Figures

Figure 1: ETAS V-Cycle..6

Figure 2: Measure Data Analyzer (MDA)..7

Figure 3: Rendering error in the MDA...8

Figure 4: Project Plan...10

Figure 5: Subversion repository ...13

Figure 6: input.xml...14

Figure 7: report.xml..15

Figure 8: mathematical method..17

Figure 9: Use Case Diagram ..19

Figure 10: State Chart Diagram..20

Figure 11: Activity Diagram ..21

Figure 12: Class Diagram in design phase ...22

Figure 13: Class Diagram re-engineered..23

Figure 14: different drawing modes ...25

Figure 15: Example for verification and tolerance...26

2/17/2006 9:29 AM Page 5 of 27

 OsciVerifier

1 Introduction
OsciVerifier is a cooperation with the Hoschschule der Medien (HdM) and ETAS (Engineering Tools
and Application Systems) in Stuttgart. The project is basis of the lecture Software Practical at the
HdM. In this lecture students makeup their own projects, test new technologies or as in our case
companies like ETAS step up and deliver ideas for interesting projects. In the following chapters we
would like to give you a brief overview over our project, the OsciVerifier.

1.1 ETAS

The ETAS Group, formed in 2003 through the merger of ETAS, Vetronix, and LiveDevices, today
supplies a comprehensive portfolio of standardized development and diagnostic tools that cover the
complete development and service life cycles of electronic control units in today's automobiles.

Prior to coming together as the ETAS Group, the three companies had already achieved considerable
success in their own rights and their own markets. With their products and services catering to various
segments of the automotive embedded systems market, they shared an exclusive focus on the
automobile industry and its suppliers. ETAS GmbH is the industry leader in providing a variety of
software and hardware development tools for electronic control units in passenger cars and trucks.
Closely related and synonymous with the name LiveDevices are the fast and powerful operating
systems for automotive microprocessors. Vetronix, by contrast, is positioned differently: Instead of
concentrating on the development environment, the company supplies cutting-edge diagnostic tools
for vehicle service.

ETAS provides measurement and calibration tools to automakers (OEMs) and suppliers worldwide.
ETAS hardware and software products form an integral part of the development process, assisting test
engineers in their investigations ranging in scope from vehicle components to functional subsystems
or assemblies to entire automobiles.

Engineers use ETAS measurement modules and ECU interfaces to acquire reliable data and calibrate
the assemblies. INCA software products are employed in data acquisition, online and offline
calibration, and measurement data analysis.

1.2 System Test

Wikipedia: “System testing is testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements. System testing falls within the scope of Black box
testing, and as such, should require no knowledge of the inner design of the code or logic.”

At ETAS the System Test is the last instance of a model called V-Cycle.

2/17/2006 9:29 AM Page 6 of 27

 OsciVerifier

Figure 1: ETAS V-Cycle

As shown in Figure 1: ETAS V-Cycle every phase of development (except implementation) has its
opponent in testing. This guarantees a comprehensive assurance of quality. For the System Test this
means that engineers do not necessarily know about the inner design, the code or logic of the system
being tested. Main input information are the requirements that were specified in the analysis. These
requirements have to be verified. All steps in between may be disregarded. This proceeding allows a
good understanding of the customer’s point of view, since the product is tested that way.

Engineers in System Test are supported by tools like Seque Silktest. These tools grant automatic
execution of test cases and scenarios or automated control of the software being tested. External tools
like OsciVerifier may be automated as well. Also, these tools have the possibility of computing data
such as screenshots or xml files for instance.

1.3 Measure Data Analyzer (MDA)

The Measured Data Analyzer (MDA) program is an offline tool for displaying and analyzing saved
measured data. The data is stored in standardized measure files e.g. binary format or timestamp-value
relation (ASCII file).

The MDA has two different evaluation windows: the Oscilloscope display window to be used as an
oscilloscope and XY-plotter, and the table display that is especially useful for quickly viewing precise
values. You can combine measured signals from different measurement files, configure their display
on the screen, and save these settings in an evaluation configuration. For the actual analysis, various
zoom functions for navigating in the measurement file, a measure cursor for measuring selected
values, and automatic difference calculation are available.

Black-Box-Tests

2/17/2006 9:29 AM Page 7 of 27

 OsciVerifier

 Figure 2: Measure Data Analyzer (MDA)

In the MDA several oscilloscopes can be displayed. In Figure 2: Measure Data Analyzer (MDA) there
are two oscilloscopes. The first oscilloscope displays analog signals and the one below digital ones.
The different types of oscilloscopes will become part of the requirements later on.

Another aspect on the MDA is that signals, especially the analog signals, may be displayed in
different modes such as step, line and timestamp mode. These modes will also be described later.

1.4 The Problem

As a matter of fact in the MDA rendering errors may occur in an oscilloscope. So, how can you verify
the content of the oscilloscopes of the MDA, before a possible error may occur on customer side?
Manual testing is not an appropriate solution, since it is too time consuming. Present tools like
“BeyondCompare” are insufficient, because they depend on the display resolution of the test system
and have no back-tracking of failures. In addition there is no appropriate test of identifying these
errors. Therefore an additional tool will be required: OsciVerifier.

2/17/2006 9:29 AM Page 8 of 27

 OsciVerifier

 Figure 3: Rendering error in the MDA

In Figure 3: Rendering error in the MDA, a value is displayed in the analog oscilloscope, which does
not exist in the measurement file. This should not happen!

1.5 Requirements

ETAS gave us a list of user problems, which had to be solved by OsciVerifier. Therefore we created
our own requirements out of this list of user problems (see 2 Project Management for more details).
The main requirements are:

- Automated search for failures in oscilloscope of MDA for the different kind of signals (analog
and digital)

- Define communication between OsciVerifier and Silktest. It should be possible to exchange
information like input parameters, test results etc.

- Operate OsciVerifier via command line

- A back tracking of failures must be possible (e.g. timestamp or time area of failure)

- OsciVerifier must support different visualization modes for waveforms. These modes are: line,
timestamp and step mode

All functionality of OsciVerifier is based on these requirements.

2/17/2006 9:29 AM Page 9 of 27

 OsciVerifier

2 Project Management
Besides designing and implementing, there was also a focus on managing the project. Our first task
was to create a rough project plan, which did not have a completed and fully detailed overview at first
but already had the time span of OsciVerifier and certain fixed dates like the project start, several
status meetings (no milestones yet) and the MediaNight. Also, the plan indicated the certain project
phases (see 2.1 Project Plan for more details).

In weekly status meetings at ETAS the progress of the project was discussed and decisions were made
for the further development of the project. Since ETAS was our “customer”, these status meetings
were necessary not to lose focus and stick to the customer’s user problems. Decisions and assigned
tasks were documented in a status report or sometimes in a meeting minutes excel sheet

In order to keep everybody, who was involved in the project, informed, a status report was sent every
week. The report had three parts. In the first part, everything that was done or problems that occurred
in the week before were described. The second part contained decisions or appointments that were
made in status or team meetings. The last part was an overview on what was going to happen in the
next couple of weeks.

Another task of project management was to create our own requirements of the prototype out of a list
of user problems from ETAS. In this list ETAS pointed out several problems, which OsciVerifier had
to solve (Please refer to the document “List_of_UPs_requirements.doc” for more details). These
requirements were marked with an ID similar to the number of the user problem and ranked with a
priority, whereas “1” means the highest priority.

An example:

Last but not least all project documentation (project plan, UML, JavaDoc, milestone presentations …)
had to be done in English, which was required by ETAS.

ID: UP0001

Description of the problem: Automated search for failures in visualization component
(oscilloscope) of MDA for continuous signals.

List of requirements:

- Read in data files and generate legal Pixels with appropriate math algorithms

- Read in MDA oscilloscope from screenshot and compare received signal pixels with the
legal pixels.

- Search for errors

- back track failures

- generate report file (.xml)

Priority: 1

2/17/2006 9:29 AM Page 10 of 27

 OsciVerifier

2.1 Project Plan

In a second step, a more detailed plan was constructed, based on the previous one. The new plan,
which was going to be our guideline till the end of the project, then contained all information, which
was necessary to complete the project successfully. And, despite of a few appointments of status
meetings, which did not take place or had to be shifted to a later date, like the milestone presentation
at ETAS in front System Test experts, all phases and fixed dates were planed and accomplished nearly
in time.

How did we plan?

First we inserted the fixed dates like the project start on October 18th, the MediaNight on January 26th
as possible project end and the status meetings with ETAS, which took place on nearly every Tuesday.
Then we calculated backwards from the project end. We estimated an implementation time of 70
hours per student, which could be done in 7 weeks. Important to us was the design phase, for what we
calculated 3 weeks. The remaining 4 weeks were separated in 3 weeks of creating a Feasibility study
and one week of approving the concept, chosen in the feasibility phase.

Figure 4: Project Plan

Note that important milestones are marked with two red circles (). On these dates the individual
presentations were held. The marker for the presentation at the HdM (“MI-Präsentationstag”) misses
in this example, but may be supplemented by the MediaNight marker, since the presentation day at the
HdM is always the day before the MediaNight.

2/17/2006 9:29 AM Page 11 of 27

 OsciVerifier

The individual project phases:

- Feasibility:

Several strategies of solving the problem (to automatically verify the content of MDA
oscilloscopes) had to be found and evaluated. In total we received three methods, which were
capable. The first method (“Graphical”) would generate a mask out of the measurement file and
identify an error in the overlay of the two pictures. The second method (“Measured Data”)
basically did the same, but instead of overlaying the masks, two arrays of pixels, which were read
from the two pictures, were compared. An error would be found, when there is a pixel value in
one array, but not in the other.

The third method (“Mathematical”), our chosen one, also compared two arrays of pixels, but did
not create a mask to read pixels from. Instead these pixels are generated directly from the
measurement file using appropriate math algorithms. This method will be described in detail later
on. Please see the document “01_Feasibility_Study.ppt” for more information on the other
methods.

- Prove of concept:

This phase was necessary to check for possible risks that may occur during the project and if the
chosen method from the feasibility phase is even practicable. As we chose Java as programming
language, we had to check for the legal rights of certain libraries (e.g. JDOM), since ETAS is
going to use OsciVerifier in the System Test. Possible risks for example were that the needed
math algorithms may not apply or are too hard to implement and if there is a way to calculate
between measurement values and pixel values, which would guarantee a back tracking of failures.

We decided that the risks are minimal and the solution should work. Also, there are no legal
problems with the used Java libraries.

- Design:

This phase was very important to us, since we wanted to avoid as much error potential as possible.
Also, it was necessary to divide the tasks of implementing in an appropriate and well known way.
Without designing we would have had a hard time of knowing who is implementing exactly what.

We did 2 weeks of designing and accomplished following diagrams:

o Use Case Diagram

o State Diagram

o Activity Diagram

o Class Diagram

These diagrams helped us not to lose focus. They are described in an extra chapter (4 Design).

- Implementation:

The implementation phase was subdivided into 4 stages. These stages were part of the
requirement of stage delivery, which means that we had to deliver our sources to ETAS after

2/17/2006 9:29 AM Page 12 of 27

 OsciVerifier

every stage for testing purposes:

o Stage1: Input/Output validation

This stage implemented the read in of all input files (input.xml, measurement file, signal
screenshot and reference screenshot).

o Stage2: Identifying / Generating

In this stage, we had to generate legal pixels out of the measurement file and to identify
the different signals and oscilloscopes (analog & digital) from the given screenshots. The
identified signals had to be saved in signal pixels.

o Stage3: Result Retrieval

After Identifying / Generating we had to compare the two arrays of pixels (legal & signal
pixels) in order to find a possible error. Also, the time of the error had to be qualified as
well as a result file needed to be written.

o Stage4: Prototype Completion

Prototype Completion meant that we had to test prototype functionality, rework possible
varieties in the diagrams from design phase and complete JavaDoc and source code
documentation.

- Create presentation:

This phase reminded us to keep a time buffer to create a presentation for the MediaNight and
ETAS.

2.2 Milestone presentations

At the end of every important phase a milestone presentation was held. All together there were four
presentations:

- Feasibility Study: All methods of solving the problem were described and rated (Pros & Cons) in
this presentation.

- Design: All diagrams, created in the design phase were presented. Also, first implementations
from Stage1: Input/Output validation were demonstrated.

- MediaNight: A brief overview over the whole project was presented at the “MI-Präsentationstag”
at the HdM.

- At ETAS: A more detailed and more technical presentation than the one for the MediaNight with
a good insight in the architecture of the project. It lasted about 45 minutes and was held in front
of ETAS System Test experts.

2/17/2006 9:29 AM Page 13 of 27

 OsciVerifier

2.3 Repository Structure of OsciVerifier

In order to guarantee a smooth proceeding in the different phases of the project, especially in the
implementation phase, we decided to use the HdM’s subversion server to keep a clear repository
structure of OsciVerifier. So, everybody of the team always had the actual project data, and no one
had to merge source code files or build new versions of the tool.

 Figure 5: Subversion repository

As shown in Figure 5: Subversion repository there are four folders below the trunk of the repository.
The documentation of OsciVerifier lies in the “Documentation” folder. All sources of OsciVerifier are
in the “OsciVerifier” folder. The “PM” folder contains the project plan and the milestone
presentations. The last folder “TestData” includes real test data, an executable JAR file of OsciVerifier
and a batch job to start it. This example was demonstrated at the MediaNight and has a built in error in
one of the given screenshots that is supposed to be found with the tool.

2/17/2006 9:29 AM Page 14 of 27

 OsciVerifier

3 Analysis & Specification
Before we could start with the programming of OsciVerifier we had to analyze and specify certain
procedures. In short, we had to find answers to following questions:

- What kind of input information is necessary?

- How is this information provided?

- How is OsciVerifier started or how does it communicate with other applications?

- What about Logging and Reporting?

These questions will be answered in the following chapters.

3.1 Input information

There is quite a lot of information required for the automated verification of an oscilloscope.
OsciVerifier needs two screenshots, one to identify the oscilloscope and one to identify the signal
inside of the oscilloscope. Both, the oscilloscope and the signals, are identified by their color,
therefore this information is required as well.

In order to generate legal pixels, the measurement file is necessary as well. Also, OsciVerifier needs
the location of these test files in the file system to able to find them. For the result file information like
the unit of the axis, the report location and an explicit test ID are interesting. To achieve a back
tracking of failures, the exact start and end values of the axis are valuable.

All this information is provided and read by Silktest, which generates a xml file:

 Figure 6: input.xml

This xml file is a required startup parameter. OsciVerifier parses the file and stores all the information
in corresponding Java classes. Note, that there is a TestSetup, Test and Section class in OsciVerifier
just like in the xml file.

2/17/2006 9:29 AM Page 15 of 27

 OsciVerifier

3.2 OsciVerifer startup

OsciVerifier is started over the command line. Therefore all sources were packed in an executable
JAR file, which may be started with certain parameters in a batch job:

java -Xms200M -Xmx400M -jar OsciVerifier.jar
"C:/Temp/TestData/input.xml" -tolerance:2 -debugMode:ON > output.log

Since we had problems with the large amount of data (one screenshot with a size of 2MB) being
inspected, we had to raise the minimum and maximum heap size of the Java Virtual Machine, which
is done by using the parameters -Xms and –Xmx.

The first parameter after the JAR file, which is initialized with –jar, delivers the location and name
of the input.xml file. To define a tolerance, in which the specific signal pixels have to lie, the
parameter -tolerance:x is used. Also, a debugging mode is implemented, which will display
possible errors graphically. This allows testers to reproduce certain test cases by hand and verify the
corresponding result. To turn on debug mode use -debugMode:ON. The parameters of tolerance and
debugMode may be omitted, since they both have default values (“4” for the tolerance and “OFF” for
debugMode).

The Pipe “> output.log“ captures the logging information printed out by OsciVerifier in a LOG
file.

3.3 Logging & Reporting

Logging is done by capturing the output of OsciVerifier in a LOG file as mentioned above.

A more important feature is the reporting. As a report, OsciVerifier generates a xml file, listing result
information for every test run. There is always one report file for every test in a test setup.

 Figure 7: report.xml

As shown in Figure 7:report.xml for every section in a test there is a result. If any errors occur, the
total amount of errors and detailed information of the first 100 errors are listed for the sorresponding
section. In order to still receive some report information in case of a system crash, OsciVerifier writes
and overwrites the report file every time a section has finished.

2/17/2006 9:29 AM Page 16 of 27

 OsciVerifier

4 Design
The feasibility phase was used to prove different methods to verify the content of an oscilloscope.

In the design phase the system components and their interaction were specified. The chosen method
needed to be transformed in a system design. We used the Borland Together Architect 2006 to create
different kinds of UML 2.0 diagrams.

At this point the method gets explained so that the context between method and diagrams can be
understood.

4.1 The method

In the feasibility phase we thought about different methods to verify the content of an oscilloscope.
We came up with three versions to solve the main challenge.

- Method 1 (graphical): Overlay of two oscilloscope pictures

- Method 2 (measure data): Compare measure data

- Method 3 (mathematical) Generate table of legal pixels

All of the three methods of course had different advantages and disadvantages. At this point I will
only talk about the proceeding of method 3, which we decided to implement.

The most important advantage of this version was that there was no necessity to build an additional
mask. Unlike method 1 and method 2, the mathematical version was not using any kind of picture
comparison. By not creating a reference oscilloscope on the host machine to be compared with some
screenshot taken by another machine, we avoided dependencies on the graphical environments e.g.
display resolution.

2/17/2006 9:29 AM Page 17 of 27

 OsciVerifier

Generate table of legal pixels

Figure 8: mathematical method

Proceeding:

Like in all of the methods there are two input documents to be used.

The first input is the screenshot taken from the MDA. This screenshot holds the oscilloscope with the
specified signal information generated by the MDA graphic library. It therefore shows the possible
errors to be found.

Second input document is an ASCII measurement file. There is a single file for every signal in any
oscilloscope. This file holds the real measurement data. The data is assumed to be the correct data to
be drawn.

The first step is to identify the relevant oscilloscopes. The information to be saved about every
oscilloscope is the starting point (upper left corner) as well as the x- and y-size. With this data it is
now possible to identify and read the actual signal data values. The pixel values of the signal file are
stored in an ArrayList. The ArrayList corresponds to “Table 1” in the above diagram.

Second step is the generation of the legal pixels. We use the measurement file data to generate the
corresponding pixel data. This is achieved by using different math algorithms. The OsciVerifier
implements three different modes. They are going to be described in detail later. The generated pixel
data is stored in an ArrayList which is displayed as “Table 2” in the above diagram.

To get the actual error pixels, the two ArrayList are now compared. Every signal pixel which has no
corresponding legal pixel is an error pixel. There is a tolerance used to compensate possible rounding
errors and a signal file which is usually two pixels thick. This tolerance expands the legal pixels e.g.
with a tolerance of 4 not only the legal pixel but every pixel in a range of 4 pixels is recognized to be

2/17/2006 9:29 AM Page 18 of 27

 OsciVerifier

ok.

After identifying the error pixels, the data gets scaled back to the measurement scale. Like this you
can later easily identify the error in the corresponding oscilloscope. When taking a short look at the
relevant oscilloscope, no one is willing to work with the pixel coordinates the error was found at.

Advantages:

- Very accurate

- Flexible to any kind of input (e.g. resolution, peaks, pauses, etc.)

- No need to create an additional mask to compare two screenshots

- Approved mathematic algorithms

Disadvantages:

- Large amount of data has to be processed and stored

4.2 A way towards implementation

To gain a structural approach towards implementation and get a basis for discussion it was necessary
to work out some UML conform diagrams. The diagrams turned out to be very useful with regard to
any discussion about the tasks of the different classes or components, potential changes in architecture
or just the partitioning of the code to be implemented.

Also our first design did not match the later implementation in detail, the main structure was
maintained. For documentation purposes there are two class diagrams shown. The first one is the one
worked out in the actual design phase, the other one is gained by reengineering the code at the end of
implementation.

4.2.1 Use Case Diagram

The Use Case Diagram is a technique used to record the functional system requirements. They
describe the typical interactions between the system user and the system itself. They explain how a
system is to be used.

The Application SilkTester is modified as the only SystemUser. All it can do is just “run the
OsciVerifier”. We see that this Use Case includes some other Use Cases like “process Test” or “read
input XML”. Actually this Use Case Diagram was the first diagram to be drawn, it includes too much
information about the system itself. This system information is better kept in the Activity Diagram as
we see later on.

2/17/2006 9:29 AM Page 19 of 27

 OsciVerifier

Figure 9: Use Case Diagram

2/17/2006 9:29 AM Page 20 of 27

 OsciVerifier

4.2.2 State Machine Diagram

State Machine Diagrams are a usual technique to describe the behavior of a system.

The OsciVerifier knows two main states, which are idle and active. Default mode is idle. After starting
the OsciVerifier its state changes from idle to active. It then can pass through a couple of sub states. In
the diagram the OsciVerifier executes all of the test cases (tests) and writes a final result ASCII file,
before it shuts down.

In the actual implementation of the OsciVerifier we decided to write a result xml file after every test.
This has the advantage that in the case of an anticipated system breakdown, at least the test results that
have been processed until the breakdown are saved.

Figure 10: State Chart Diagram

2/17/2006 9:29 AM Page 21 of 27

 OsciVerifier

4.2.3 Activity Diagram

Activity Diagrams are a technique to describe procedural logic, business processes and workflows. In
contrast to flowcharts they are able to display parallel behavior.

This Activity Diagram was created for presentation purposes after finishing the implementation. It
describes the procedural logic of the OsciVerifier.

Figure 11: Activity Diagram

2/17/2006 9:29 AM Page 22 of 27

 OsciVerifier

4.2.4 Class Diagram

The Class Diagram is the most common UML diagram. Class Diagrams describe the object types in
the system and the different static relations between them. In addition they show the features and
operations of a class and tell you what kinds of restrictions are existent for object relations

The first Class Diagram shows the system as specified at the beginning of the project. Some of the
classes and operations were not used in the later implementation, but overall the design tended to
simply the system. The second diagram, which is reengineered is more complex and includes a couple
of classes with functionality we were not aware of at the very beginning.

Figure 12: Class Diagram in design phase

2/17/2006 9:29 AM Page 23 of 27

 OsciVerifier

Figure 13: Class Diagram re-engineered

2/17/2006 9:29 AM Page 24 of 27

 OsciVerifier

5 Implementation
OsciVerifier was implemented in Java. Implementation Environment was Eclipse 3.1. The Code was
structured into 6 packages, with a total amount of 18 classes and about 2600 lines of code.

5.1 Identifying

Both oscilloscope as well as signal pixels are identified by grabbing all of the pixels in the screenshot.
The needed pixels are filtered and stored in either an array or an array list.

Identifying the different kinds of oscilloscopes:

To identify the different kinds of oscilloscope the OsciVerifier uses a given reference screenshot of
the MDA for every test. This means that every section in a test refers to the same reference screenshot,
but also has an own equivalent screenshot of the MDA (due to position and size of the oscilloscopes)
with the specified signal in the foreground.

This simplifies the whole process by identifying the oscilloscopes position and size only once and
then using the determined information to read at the right positions at all of the section screenshots.

The reference screenshot contains no signal data. It shows the oscilloscopes as single colored plain
areas. This color is specified through the input XML file and used to identify the oscilloscope.

The algorithm to determine the starting point and the size of the oscilloscopes counts the number of
pixels with background color in every row and in every column. It then checks for the most appearing
number for the columns and stores the index of the first and last column with this number. The same
procedure is used for rows, only that for the rows there are two starting and two end points.

The points stored represent the x-coordinates and the y- coordinates of the oscilloscopes. This
algorithm is functional because the oscilloscopes always got the same x-Axis start and end point and
the oscilloscopes do not overlap.

In order to separate an analog oscilloscope from a digital one the color of the integrated signal is
decisive.

o Analog: red = 255 and green, blue = 100 to 200

o Digital: blue = 255 and green, red = 100 to 200

It also would have been possible to identify the different types of oscilloscopes by their position. In
this case the analog one would have been the upper one and the digital oscilloscope would have been
the lower one. The OsciVerifier still distinguishes the oscilloscopes by the signal color, this makes
further oscilloscope types more easily adaptable. With three oscilloscopes the order of the
oscilloscope types would not be predictable any more.

Identifying the actual signals:

For every pixel in the oscilloscope matching the color specified in the section, the corresponding
coordinates are saved (including possible error pixels) in an ArrayList. This ArrayList is later
compared with the legal pixels.

2/17/2006 9:29 AM Page 25 of 27

 OsciVerifier

5.2 Generating

In order to find any error pixels the OsciVerifier needs to compare the previously identified signal
pixels with a list of legal pixels. This list is available in form of the measurement file.

To generate the legal pixels out of the measurement data it is necessary to:

- Scale the measurement values into pixel values. This is done by determining the ratio between
pixel and measurement value (rule of proportion).

- Generate all of the pixels, drawn in between the single measurement points. The MDA itself
works with different modes to connect the measurement points. In order to get equivalent results
the OsciVerifier needs to implement certain algorithms for these modes:

Figure 14: different drawing modes

o Line Mode:

Is implemented with the Bresenham Line Algorithm, this algorithm generates pixels
which lay on a direct line between two measured pixels

o Step Mode:

Self-implemented

o Timestamp:

Not necessary for the minimum pixel size, but it needs further implementation if a
greater pixel size or different marker forms (triangle, square) are requested, this was not
part of the requirements.

5.3 Verifying

Verification of the correct representation of the signal pixels is achieved by comparing the signal
pixels with the legal pixels including the tolerance. The tolerance which may be defined at the
program startup tolerates signal pixels close to actual legal pixels. This small variance can not be
avoided. It is caused by rounding errors (scaling measuring data into pixels) and by the fact that the
signal line might be up to two pixels thick.

In the lower diagram we see the two red filled drawn pixels. For these two pixels the corresponding
legal pixel can lay anywhere right next to one of these two pixels. With the minimum tolerance of 2
pixels (green area around the filled blue pixel) all of the possible spots for the red pixels are covered.

2/17/2006 9:29 AM Page 26 of 27

 OsciVerifier

Figure 15: Example for verification and tolerance

5.4 Back tracking of failures

If an error is found its pixel coordinates get scaled back to the corresponding measurement coordinate.
This is achieved by scaling. The x-value will be scaled back to a timestamp. The y-value will be
scaled back to a possible measurement value.

Scaling is needed because the measurement scale does not match a pixel scale. It is done by
determining the ratio between pixel and measurement value (rule of proportion).

After scaling the start x-value of the certain oscilloscope, it has to be added to the x value of the error.
This is because not every oscilloscope starts with zero, but can show a range of possible values
starting for example with 30 and ending with 60.

2/17/2006 9:29 AM Page 27 of 27

 OsciVerifier

6 Conclusion
In a very interesting project, we were able to learn more about programming with Java, the field of
system testing and project management. Altogether it was a great opportunity to work with and for a
company like ETAS. Thanks to Mr. Gemmi we were greatly supported in all the processing of the
project.

It is a pleasure to see, that students and their skills were able to solve a concrete problem of a
company. Interesting to experience was that ETAS is not the only company with a problem like this.
On the MediaNight, we spoke to people, having similar problems of verifying the content of pictures.

Besides, that OsciVerifier is already used in System test, there might be the possibility to expand or
rework the tool in additional software projects or even in a diploma thesis.

