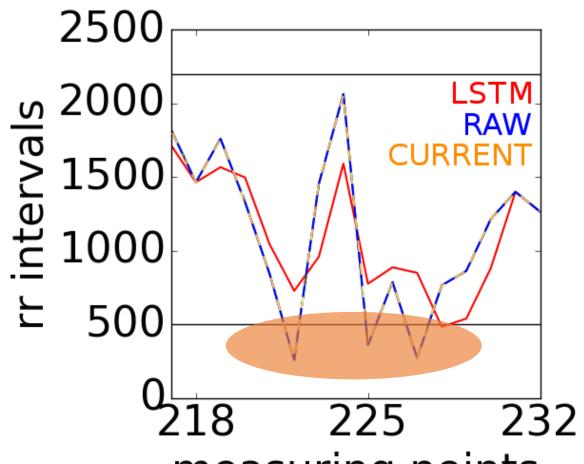
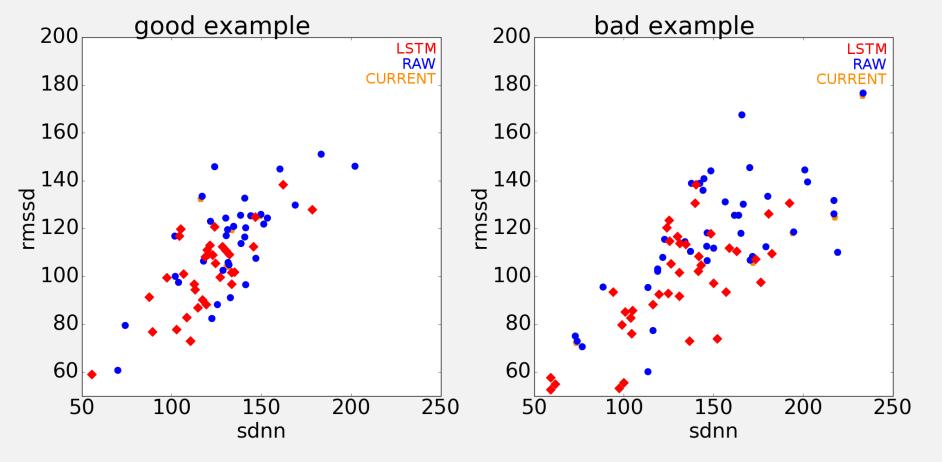


variability values



Outlier Detection with Neural Networks



training session

LSTM special is An а architecture of a recurrent neural network. With its it the gates overcomes vanishing gradient problem. We used it to predict RR intervals in measurement series out of its predecessors.

Results

We labeled series with good and bad labels. Bad labeled examples supposed to have outliers. We calculated the heart rate variability (HRV) values for each example and

filter type: No filter (raw), current filter (threshold mean distance in an area around the measuring point), LSTM.

[1]

Bad examples get shifted to smaller values

measuring points

Good examples get less adjusted

HRV	Current		Raw	LSTM	
Parameter	mean	diff	mean	mean	diff
sdnn (good)	151.19	- 0.02 %	151.22	129.47	- 14.39 %
rmssd (good)	117.34	- 0.17 %	117.54	97.08	- 17.41 %
sdnn (bad)	137.98	- 0.16 %	138.21	122.96	- 11.03 %
rmssd (bad)	122.10	- 0.35 %	122.53	109.82	- 10.38 %

With help of the predictions we can correct outliers and improve the robustness of heart rate variability values which are used to estimate physical stress and fitness of a user.

[1] image source: Johannes Maucher