

Hochschule der Medien

Project Documentation of
PhishCoach

Jonas Koch

41489

jk249

Steffen Schawjinski

41524

ss533

I

Table of Contents
1. PhishCoach Introduction ... 1

2. Ideation & Decision ... 1

3. Concept ... 2

3.1. Minimum Viable Product ... 2

3.2. Gameplay Idea ... 3

3.3. Mockups ... 3

3.4. Project Initialization ... 4

3.5. Communication ... 4

4. Frontend .. 5

4.1. Icons ... 5

4.2. Bootstrap .. 7

4.3. Structure, Design and Logic .. 7

4.3.1. Django Setup ... 7

4.3.2. Responsive Design .. 7

4.3.3. Link Preview ... 8

4.3.4. Logo, Progression & Score .. 8

4.3.5. Email Display ... 9

4.3.6. Buttons ... 10

4.3.7. Solution .. 10

4.3.8. Email Generation .. 11

4.3.9. Final Score Display .. 12

4.3.10. JavaScript Reminder ... 13

5. Backend .. 14

5.1. Python ... 14

II

5.2. Django .. 14

5.3. Database .. 14

5.4. Email ... 15

5.4.1. Phishing emails in detail ... 16

5.5. HTML Content .. 17

5.6. Priority ... 18

6. Project Setup ... 18

6.1. ReadMe .. 18

6.2. Initialization Script ... 19

6.3. Startup Script .. 19

7. Validation ... 20

7.1. Testing .. 20

7.2. Identified Problems ... 20

7.3. Feedback .. 21

7.4. Presentation .. 22

8. Discussion ... 22

8.1. Potential Use Cases ... 22

8.2. Improvement Capabilities ... 23

8.3. PhishCoach Review .. 24

List of References .. 25

III

Table of Figures
Figure 1: PhishCoach mockup ... 3

Figure 2: PhishCoach user interface .. 5

Figure 3: PhishCoach logo ... 6

Figure 4: Score display .. 6

Figure 5: First letter of sender’s name ... 6

Figure 6: Attachment icon .. 6

Figure 7: Link preview window ... 8

Figure 8: Top row with logo, progression and score 8

Figure 9: Email head .. 9

Figure 10: Email content .. 9

Figure 11: Phishing and Authentic buttons .. 10

Figure 12: Solution window .. 11

Figure 13: All in one email generation .. 12

Figure 14: Score display after quiz ... 13

Figure 15: JavaScript reminder in the user interface 13

Figure 16: Backend configuration panel ... 15

Figure 17: Example phishing email with swapped “O” and “0” 16

Figure 18: Example phishing email with CEO fraud 17

Figure 19: HTML in backend .. 17

1

1. PhishCoach Introduction
PhishCoach is a web application designed to educate users on identifying
phishing emails. This interactive tool was developed as part of a software
project, primarily for educational use. The motivation behind PhishCoach lies
in addressing one of the most common yet effective cybercrime tactics, which
is phishing.

Phishing emails pose a significant threat to online security. They are
deceptive messages designed to trick recipients into revealing sensitive
information, such as passwords, credit card numbers or other personal data.
The problem with these emails is that they often appear to come from
legitimate sources, such as banks, online retailers, or even friends and
colleagues, making it difficult for people to distinguish them from genuine
correspondence. This can lead to devastating consequences, such as
identity theft, financial loss or unauthorized access to confidential information.
Phishing attacks are widespread and yield high success rates, making them
a preferred method among cybercriminals (Petrosyan, 2023).

Empowering users to identify these malicious emails can drastically reduce
their vulnerability to such threats.

In this document, detailed insights into the creation of PhishCoach are
provided, from ideation and concept creation to the final product. The
documentation begins with an overview of the thought process, decisions,
and the conceptual foundation of PhishCoach. This is then followed by a
deep dive into the technical aspects, including frontend and backend
functionalities, icons, the Bootstrap framework and how Django has been
utilized. Several specific features such as link previews, email displays,
button functionalities, solutions and the process of email generation are
included. This is complemented by the backend, including the Django setup
and the database structure. The received feedback is shared and problems
are identified during the validation phase, concluding with a review and
potential use cases of PhishCoach.

While navigating through this document, an in-depth understanding of
PhishCoach, its purpose, design, and workings is provided.

2. Ideation & Decision
In the early stages of the project, the type of project was first identified.
Whether it be a program, an app or a website, the decision had to be
unanimous. After some discussions, the available skills and experiences
were exchanged and in this regard Django, a high-level Python Web
framework, was chosen for developing a web application.

2

In the brainstorming phase a long list of potential project ideas was created.
Some of these were dismissed as they had already been done by others in
similar forms. Afterwards it was decided to settle on PhishCoach, a unique
idea in the realm of IT security, an area that was less explored and of
increasing importance.

Initially, one of the ideas was to add a feature where it would send out a
phishing email with a link. This link would direct the “victim” to the
PhishCoach web application trainer. However, in this case the university
would need to be asked for permission to proceed with this. Therefore, this
idea had been discarded because it was regarded as excessive with regards
to a software project. Furthermore, this approach would force everyone to
participate without giving them a choice. Additionally, real links can still be
traced, which could pose a security risk if a link wasn't properly updated.
After dismissing this idea, the focus lied on PhishCoach becoming a web
application for the software project, focusing on educating users about
phishing emails.

3. Concept
This section of the document delves into the initial stages of the PhishCoach
project, focusing on the foundational concepts that shaped the direction of
the software. Here, key topics such as the Minimum Viable Product (MVP),
the gamified learning approach, the team communication strategies and the
project setup will be discussed.

3.1. Minimum Viable Product

The project's starting point involved defining the Minimum Viable Product
(MVP), the most basic version of the product that can still convey the main
idea and serve its primary purpose. For PhishCoach, the MVP was identified
as a user-friendly web application capable of randomly displaying various
emails to the users. Its core feature should revolve around the ability for
users to determine the authenticity of each email, providing them with two
options: "Authentic" and "Phishing".

Following the user's selection, the application should then provide a detailed
explanation as to why the presented email was classified as phishing or
authentic. This feedback loop should serve to reinforce the learning process,
allowing users to understand the reasoning behind each classification.

Moreover, the goal was to design the web application with scalability and
adaptability in mind. Therefore, the system should offer a straightforward way
of creating and adding new emails. This ensures that the application can
remain up-to-date and continually offer fresh, relevant content. By focusing
on these key aspects, the MVP should effectively capture the fundamental

3

essence of PhishCoach, laying a robust foundation for future advancements
and refinements.

3.2. Gameplay Idea

The idea behind the gameplay of PhishCoach is rooted in the concept of
gamification, the addition of game elements in non-game contexts. The
purpose here is to transform the learning process from the simple everyday
task of differentiating between authentic and phishing emails into an
engaging and interactive experience. In this system, users can see their
progress through a score count that reflects the number of emails they have
accurately judged as either authentic or phishing. This not only keeps users
informed about their progress but also adds an element of challenge and
achievement, encouraging them to improve their skills. In order to speed up
the game loop only 5 out of 10 emails are served at a time. This could be
easily changed in the code though.

3.3. Mockups

This mockup served as a stable reference point throughout the project
development. It underwent minimal alterations, with the only notable change
being the location of the email solution.

Figure 1: PhishCoach mockup

4

Moreover, the mockup functioned as more than just a visual guide. Django
variables were incorporated into the mockup as a reminder for the
communication between the frontend and the database.

3.4. Project Initialization

The set up of the PhishCoach project started with creating a Git repository in
GitLab. This GitLab repository acts as a central place where all the project's
files and changes are stored. After setting up the repository, the next step
involved establishing the necessary files for the Django project.

Implementing Django, a high-level Python web framework, helped in
developing a clean and pragmatic design for the web application. With the
Django files in place, the foundation for the PhishCoach project was set,
ready for further development.

The next significant step in setting up the project was integrating Bootstrap.
Instead of linking to the Bootstrap library externally, which could lead to
connectivity issues if the Bootstrap link fails at any point, the library was
installed locally in the repository. This strategy ensured that Bootstrap was
always available for use.

3.5. Communication

Successful communication is a necessity of any collaborative project. Despite
being a team of two, ensuring effective communication was vital. It involved
organizing and sharing all relevant information and tasks, ensuring both team
members were on the same page throughout the project's development.

One of the primary tools utilized was GitLab. All the necessary files related to
the project were shared via GitLab, and the repository's readme file was
updated continuously with technical information.

In addition to GitLab, a shared OneDrive folder was used for storing non-
code files. For instance, Photoshop files used to create the PhishCoach logo
were stored here.

For sharing drawings, mock-ups, and miscellaneous notes, OneNote served
as a shared notebook. This digital notebook allowed for easy sharing and
editing of ideas and information in a structured format.

To stay organized and ensure that tasks were completed in a timely manner,
Google Keep was employed for to-do tracking. Both technical and
organizational tasks were listed here, keeping track of what needed to be
done and ensuring nothing was overlooked. In the code, a "Todo" comment
was also used as a reminder of elements that still required attention.

5

Lastly, for immediate and direct communication, the team resorted to
WhatsApp and Discord. WhatsApp was primarily used for quick, less formal
arrangements, while Discord served as the communication medium during
active project development. These platforms allowed for easy real-time
communication, ensuring both team members could discuss and solve issues
as they arose.

4. Frontend
The frontend of the PhishCoach web application plays a crucial role in
providing users with an engaging and easy-to-use interface. This part of the
document covers the various components that contribute to the frontend's
effectiveness.

Figure 2: PhishCoach user interface

It includes information on icon creation, the use of Bootstrap, the structure of
the HTML, the setup of the CSS and the logic behind the JavaScript file.
Each of these components is crucial in their own way, working together to
provide stable user experience.

4.1. Icons

The design and creation of the icons for PhishCoach heavily utilized the
Adobe Creative Cloud, with Photoshop and Illustrator being the primary tools.
The project logo, a central icon, was initially extracted from a poster created
for the Media Night. However, to better align with PhishCoach's theme,
modifications were made. The logo was then used as the tab icon for the web
application.

6

The PhishCoach text in the top area of the web application was exported as
a PNG icon. This was done due to PNG's ability to provide lossless
compression and support of transparency.

Figure 3: PhishCoach logo

Moreover, some elements of the web application were styled to look like
icons but were generated using HTML and CSS. For instance, the score
display was designed as a circle using CSS.

Figure 4: Score display

A similar approach was used when creating the preview about the first letter
of the sender’s name.

Figure 5: First letter of sender’s name

When it came to utilizing external icons, it was always ensured that the icons
fell under the Creative Commons Zero (CC0) license. This license allows for
unrestricted use without the need to credit the original creator. An example of
this in PhishCoach is the attachment file icon.

Figure 6: Attachment icon

Although there was initial consideration to create this icon dynamically, with
the file ending inside the icon, it was ultimately decided to keep it simple and
focus efforts on other areas of the project.

7

4.2. Bootstrap

Bootstrap was selected as a tool for developing the PhishCoach project due
to its ability to create responsive websites. With the rising usage of various
screen sizes, having a website that adapts to different devices is important.
Bootstrap helps in achieving this responsiveness and speeds up the design
process significantly.

A key advantage of Bootstrap is its robust grid system, which simplifies the
arrangement of elements on the page. The card template from Bootstrap, for
example, facilitates the quick creation of different containers. Despite some
drawbacks, such as the loading of surplus code that might not be necessary,
the choice to use Bootstrap was deemed beneficial. Given the lack of large
elements in PhishCoach, the overhead associated with Bootstrap was not a
significant concern. The benefits in terms of speed, convenience, and
adaptability ultimately outweighed this issue.

4.3. Structure, Design and Logic

The HTML structure of the PhishCoach web application plays an important
part in defining how its various elements are arranged and interacted with
each other. The upcoming sections delve deeper into each element,
discussing their design and function.

4.3.1. Django Setup

When setting up the HTML structure for PhishCoach in Django, a “base.html”
file was created. This file contains all the meta data that is loaded. In a
situation where the PhishCoach project is expanded in the future, this base
file would be beneficial, as it can hold elements that are common to every
subpage. Currently though, its use is limited to containing meta data.

Following the base file is the “index.html”. This file serves as the primary file
that is displayed to the user whenever they access the web application. It
functions as the main view where the core functionalities and interactions of
the PhishCoach project are made accessible to the user.

Every HTML file in the PhishCoach project includes a reference to the static
folder. This setup is crucial as it provides a structured way to access a variety
of assets used throughout the application such as CSS files, JS files,
libraries, fonts and images.

4.3.2. Responsive Design

The concept of responsive design was an important aspect in the creation of
PhishCoach, especially given the popularity of smartphone use in today’s
world. With most individuals now accessing websites via their vertically

8

oriented smartphone screens or in a small browser window on a computer, it
is essential to create a website that supports various display sizes and
aspect ratios. To ensure this adaptability, each new element introduced into
PhishCoach was created with responsiveness in mind.

During the development process, four different PhishCoach windows were
consistently kept open, each set to a different screen size, to account for a
variety of potential viewing scenarios. This testing environment ensured that
the site would remain accessible and user-friendly, regardless of the device
being used. Bootstrap was chosen as the primary framework for PhishCoach
largely due to its focus on responsive design, which further streamlined the
process of creating an accessible website.

4.3.3. Link Preview

A small preview feature is implemented in the bottom left corner of the web
application, designed to mirror the behaviour of a web browser link preview.
This square-shaped element gives a glimpse of where a link will lead.
However, because the links featured in the application should not be real, a
precaution taken to avoid leading users to harmful websites, a custom link
preview is introduced.

Figure 7: Link preview window

The operation of this custom link preview is driven by JavaScript interacting
with HTML elements tagged with specific classes. If a class named "link" is
detected in the code delivered from the backend, JavaScript assigns an
event listener to this pseudo link. When hovering over this fake link, the
content of another HTML element identified by the class "link-content" is
displayed in the link preview square, thus providing a harmless yet realistic
representation of a link's destination.

4.3.4. Logo, Progression & Score

At the top of the PhishCoach web application, there are four elements
designed to provide a user-friendly experience.

Figure 8: Top row with logo, progression and score

9

Starting from the left, the logo text is interactive. By clicking, it refreshes the
application and initiates a new quiz. Adjacent to it is a progress indicator that
visually represents how much of the current quiz the user has completed.
This is followed by a display that informs the user of the total number of
emails included in the quiz. To the far right, a circular score counter keeps
track of the number of emails the user has correctly identified up to that point.

4.3.5. Email Display

The email display in PhishCoach is set up to be as informative and intuitive
as possible. The top part of each email, known as the email head, is
designed to resemble a standard mail provider’s layout while still offering all
necessary information at a glance.

Figure 9: Email head

The head starts with the first letter of the sender's name displayed in a circle.
Adjacent to it is the sender's alias and email address in brackets. Beneath
this, the recipient information is shown as "Mich
JohnDoe@bestCompany.com". This implies that the user is playing a
character named John Doe, who is presumably an employee of a fictional
company called Best Company. Lastly, the email subject is displayed,
featuring custom text supplied from the backend.

Underneath the email head is the body of the email, where the content
provided by the backend is displayed.

Figure 10: Email content

This section can render HTML code, which allows for a versatile range of
content. However, any line breaks in the email will not be shown unless
specified by HTML tags. The content area is also where any links are
displayed, these links are the sources for the link preview, as discussed
earlier in "4.3.3 Link Preview".

10

Lastly, at the very bottom of each email is an area for attachments - as can
be seen in “Figure 6: Attachment icon” - if any are present for that email. In
this setup, an attachment is represented by a string and doesn't contain a
downloadable file. Furthermore, only one attachment can be associated with
each email. A decision was made to limit emails to a single attachment, as
having more than one was seen as unnecessary for assessing an email's
legitimacy. The most important part of the attachment area is the ability to
see the attachment extension. For instance, attachments with ".exe", “.docx”
or ".html" file extensions could serve as warning signs.

4.3.6. Buttons

In an attempt to maintain a user-friendly interface, PhishCoach has been
designed with minimal clicks in mind. This is achieved by providing just two
options: "Phishing" and "Authentic".

Figure 11: Phishing and Authentic buttons

Both these buttons trigger JavaScript methods that reveal the solution
window. While this solution window is displayed, the "Phishing" and
"Authentic" buttons are hidden, and a "Next" button appears in their place.
The decision to position the "Next" button between the "Phishing" and
"Authentic" buttons was a conscious one, with the aim to prevent users from
mindlessly clicking through the quiz.

Once the "Next" button is clicked, the previous email window is replaced by
the next one, the solution window is hidden, and the "Authentic" and
"Phishing" buttons reappear, ready for the next round of the quiz. This cycle
continues until the quiz is completed.

4.3.7. Solution

After a user has made their selection regarding the authenticity of an email, a
window is shown below the email.

11

Figure 12: Solution window

As seen in “Figure 1: PhishCoach mockup” this was originally intended to be
on the left side of the email. This was later changed for a better flow of the
quiz, as it would have resized the email every time the solution would have
been shown.

This window firstly informs the user, in bold, whether their choice was correct
or not and clarifies, if the email in question was a phishing attempt. The
window then displays a text that is sourced from the backend. This text
typically includes (though it can contain anything) the clues that indicate
whether an email was genuine or phishing. If an email is genuine, the text
may elaborate on elements that could have misled the user into thinking it
was suspicious. On the other hand, if the email is phishing, the text should
list all the reasons, including how they can be identified and why they pose a
threat. This way, users are educated by PhishCoach on how to identify
potentially harmful elements in an email.

4.3.8. Email Generation

The emails in PhishCoach are structured in a way that allows all necessary
information to be loaded into the application at one go. This reduces the need
for frequent server communications and makes the experience smoother for
the user. Although this method might require a bit more rendering time
initially, it cuts down significantly on the loading time when transitioning
between emails.

Every email and solution window is labelled with an identification number
based on its sequence in the progression order. This number is added to
their HTML id attribute. When the user interacts with the "Authentic",
"Phishing", or "Next" buttons, a JavaScript code executes. This code updates
the user's score, progresses through the sequence, hides the currently
visible email and solution, and unveils the next set.

12

Figure 13: All in one email generation

Since the user communicates with the server only once, the entire game
logic is pre-loaded into a JavaScript file, eliminating the need for further
server calls. This works well for PhishCoach as there is no competitive
element like leaderboards involved, and hence, no risk of cheating. If a user
were to cheat by inspecting the pre-loaded solutions, they'd only be
undermining their own learning experience. Besides, doing so would require
a conscious effort to seek out and examine the relevant elements within the
code.

4.3.9. Final Score Display

Upon completion of the quiz, the top row, the email window, buttons and
solution panel are replaced by a final score display.

13

Figure 14: Score display after quiz

This new window showcases the player's final score, providing immediate
feedback on their performance. Alongside the score, a retry button is offered.
This allows for immediate replay, enabling users to challenge themselves
again.

4.3.10. JavaScript Reminder

If a user has JavaScript turned off, it's important that they understand the
PhishCoach website won't function as intended. To ensure this, a clear
warning message is set to display at the top of the site when JavaScript is
detected as deactivated.

Figure 15: JavaScript reminder in the user interface

This alert requests the user to enable JavaScript, making it clear that the
website's functionality depends on it. By doing so, any potential confusion or
issues stemming from the site not working should be avoidable.

14

5. Backend
This section discusses the technologies employed in the backend, providing
reasons for each choice, and offering a detailed peek into the backend logic
of the program.

5.1. Python

The backend of the web application, PhishCoach, is coded in Python using
the Django framework. The choice to use Python was influenced by the
team's previous experience with this programming language. Moreover, the
team had worked with Java for their last three software projects and wanted
to diversify their experience.

Python, being one of the most popular programming languages, has an easy-
to-understand syntax. This simplicity makes it a great choice because if any
issues were encountered, solutions could be found quickly due to the
widespread use of the language. The straightforward syntax allowed the
team to focus more on programming, minimizing the time wasted on
debugging syntax-related issues.

5.2. Django

Django, a robust Python framework, was the top choice for the PhishCoach
project. What sets Django apart is that it comes with a lot of built-in features.
This means less manual setup compared to other frameworks like Flask. It's
like a full toolset that offers everything you need to build a web application
right out of the box.

For example, Django takes care of database connections for you, which can
be a time-consuming task if done manually. Also, Django's inbuilt templates
make the program more dynamic and easier to extend, which is a great plus.
A big help was Django's large and supportive community, along with its clear,
detailed documentation. This makes it easier to find answers when stuck.
The fact that the team had prior experience with Django gave a head start,
but even if this would not have been the case, the benefits of Django would
still be hard to ignore.

5.3. Database

PhishCoach relies on a database to keep emails stored for the long term.
Django's built-in sqlite3 database was used for the project. To manage
emails - adding new ones, editing existing ones, or deleting them - Django's
standard admin panel has been used. The database itself is kept simple, built
around a single table that holds all the necessary details for an email.

15

Figure 16: Backend configuration panel

This table consists of the following columns:

• Sender – Email address of the sender
• Sender name – Name which is displayed in the email header
• Subject – Text field with the subject of the email
• Content – The email body that allows usage of HTML Tags
• Real – Boolean value marking an email as real or as phishing
• Solution – Explanation of why a email is real or phishing
• Has attachment – Determines if the attachment windows should be

displayed
• Attachment – Text that is displayed as the attachment name
• Priority – Ensures that an email will be at the start of the quiz

Apart from custom attachments, this table enables the creator of the emails
full email customization.

5.4. Email

Emails form the core of the PhishCoach application. The aim was to include
a wide range of possible phishing scenarios to provide users with a

16

comprehensive understanding of the threats they could encounter. These
scenarios varied from seemingly harmless co-worker emails and supplier
phishing attempts to more severe CEO fraud phishing situations. In these
latter scenarios, the attackers had previously compromised the CEO's
account. The effort was made to always try to implement more than one clue
in a phishing email to cover as many different dangers as possible.

To make the situations more relatable, a fictional setting was created. A
character named John Doe was introduced, an employee at a company
called Best Company. John works in the finance department and receives
various emails during his workday. However, not all these emails are as
genuine as they first appear to be.

5.4.1. Phishing emails in detail

In one of the emails, the Unicode characters were swapped with characters
that look identical. Instead of an “e” the unicode character U+0435 was used.
Because this character is not distinguishable by the human eye, a fake link
was also put into the email.

A fake link can be created by leveraging the popular URL shortening service,
TinyURL. It's worth noting that services like TinyURL can mask the true
destination of a link, making it an ideal tool for phishing attempts. In this
scenario, the true URL would likely be concealed within a TinyURL link,
adding a layer of deception.

In other emails look-alike email addresses were used instead of look-alike
URLs, meaning that either a character was left out or swapped with a similar
one (e.g. swapping “O” and “0”).

Figure 17: Example phishing email with swapped “O” and “0”

These were also the emails which had the highest rates of going unnoticed
as phishing emails.

17

As mentioned above a scenario was implemented in which CEO fraud was
attempted. In this email the classic signs of phishing emails were used, which
usually involve time pressure and the message not to tell anyone about it.

Figure 18: Example phishing email with CEO fraud

Something similar was used for an email scenario in which a different
company was imitated that the company of John Doe owed money to. In it
the standard approach to put time pressure on the victim and a fake link in
combination were used.

In the standard emails of the project exists a sender with the name Mallory.
This name was chosen to throw off students that visited IT-Security lessons
because it is often implied that Mallory is an acronym for a malicious
attacker. However, the goal was to confuse people with this and check
whether they get careless when reading this name.

5.5. HTML Content

In PhishCoach, creating emails includes some unique features. Notably, the
content field can process HTML code, which means you can directly paste
real phishing email content into this field and it will display as expected.

Figure 19: HTML in backend

18

However, this also implies that any links in the HTML will be active. To
manage this, a mechanism was developed using CSS and JavaScript to
simulate the links.

When a user moves their cursor over a text with the "link" class, an event
listener is triggered. This action removes a CSS attribute and as a result, the
URL is shown in the link preview in the bottom left corner of the screen,
similar to how it would appear when hovering over a standard hyperlink.
Hence, links need to be formatted in this way:

URL

DISPLAYED TEXT

.

5.6. Priority

PhishCoach has a feature that makes it possible to choose which emails
should be seen first. Each email has a "priority" option. This is a simple yes
or no choice. When the priority is set to "yes", these emails are always shown
before other emails and are shuffled in their own list. This way, the most
important emails come first.

If there are more than five priority emails, then only five of those marked as
priority emails will be shown in the list. This feature ensures that the most
important or relevant emails are always shown to the user first. This way, it
can be ensured that users focus on the most critical emails first in their
training.

6. Project Setup
To initialize the project on a new machine, the ReadMe, Initialization Script,
and Startup Script serve as important tools.

6.1. ReadMe

The "ReadMe" file serves as a comprehensive guide to set up and utilize the
project. It provides detailed instructions that should be followed from
beginning to end, skipping steps only when explicitly stated. This file outlines
the system requirements necessary for the project and provides both
automated and manual setup processes. It is designed to be user-friendly,
aiming to ensure a smooth installation and setup. In the latter part, it covers
the most important use cases for the admin panel, making it a valuable
resource for the project's operation.

19

6.2. Initialization Script

The "PhishCoach_Initialization.ps1" script serves as a helpful tool to set up
the project on a new system. To employ this script, PowerShell is used
according to the steps specified in the readme file. The first action performed
by this script is to trigger a debug output. This allows the user to monitor
progress as it carries out various operations. Without this, the script would
appear to not be working for a period of time. After this, the script stores
various paths for future use.

The second aspect of this script is the creation of a shortcut to the
"PhishCoach_Startup.ps1" script. The paths previously saved are employed
here. Elements such as a target path, arguments, a working directory and an
icon are set. If any of these elements are absent, with the exception of the
icon, the shortcut would fail to function if relocated.

The third part of the Initialization Script handles the creation of a virtual
environment and its subsequent activation. It's worth noting that all the
following steps are performed within this environment. To execute this step, a
script created by Python is used. However, this requires that script execution
be allowed in the console beforehand, a process that is detailed in the
ReadMe file. Following this, Django is installed, Django database migrations
are made and an admin account is created. Due to security reasons, scripts
are not permitted to insert password details. This step is therefore
accomplished by simulating user input.

6.3. Startup Script

The " PhishCoach_Startup.ps1" is designed to simplify the process of
launching PhishCoach. Typically, to launch the script, it would be necessary
to navigate to the appropriate folder, right-click the file and select "Run using
PowerShell". The creation of a shortcut and corresponding arguments,
however, streamlines this process. This shortcut can be placed anywhere
and is immediately identifiable thanks to its assigned icon. A simple double-
click is required to launch the application. This is made possible by linking the
shortcut to PowerShell, which in turn is set to execute the script. Additionally,
the executionPolicy of the current user must be set to at least RemoteSigned
as Restricted and Undefined do not suffice to use the Shortcut.

When the Startup Script is initiated, it launches a separate PowerShell within
the existing one. This second PowerShell navigates to the current folder,
activates the virtual environment, performs migrations and then launches the
server. This nested process ensures that all required steps are completed in
the correct environment and order.

20

Once these actions are completed, the initial PowerShell window takes care
of opening two browser tabs. One tab contains the admin panel, while the
other showcases the main PhishCoach application. With these two tabs
open, the original PowerShell window can then be closed. This process
allows for a smooth transition into using PhishCoach, with all necessary
windows and tools immediately available.

7. Validation
In the process of developing a software project, validation plays an essential
role. This section delves into the different strategies applied to validate the
work done on the PhishCoach project. It addresses the key areas testing,
identifying problems, and gathering feedback. In creating the program,
continuous testing was carried out to ensure its proper functioning. Inevitably,
some problems emerged that were either unsolvable or impractical to
address, given the project's scope and resources. To make the application as
effective and user-friendly as possible, feedback was continually sought and
incorporated.

7.1. Testing

When developing software applications, testing is a crucial process to ensure
reliability and performance. For PhishCoach, even though specific unit tests
were not conducted, various other testing approaches were adopted to
ensure minimal bugs and maximum efficiency.

For the front end, testing was immediately carried out while a new
component was programmed. Different windows were filled with various
contents to verify the responsiveness of the website. When JavaScript code
was created, html testing elements were established to check if the code was
functioning correctly. This way, any issues with the display, layout, or
behaviour of the website could be spotted more easily and fixed.

In contrast, testing the backend involved assessing the database by sending
data to the frontend and checking if the content was accurate. Django was
also immediately tested whenever any changes were implemented. This
check was done to confirm if Django was correctly manipulating the
database. Changes in Django were verified by creating test database content
via the Django admin portal and observing it on the frontend.

7.2. Identified Problems

In the development process, several issues surfaced that proved challenging
to resolve completely. One of these is related to the incorporation of CSS
code into emails. Any CSS included within an email would influence the
entire web page. There were attempts to mitigate this by renaming every

21

element on the webpage to obscure names or by trying to encapsulate the
webpage within an iframe. However, the iframe solution did not work as
anticipated. The trouble lay in the fact that the email was rendered as HTML
content by Django into the frontend HTML file. When an iframe was used, the
content had to be inserted as a string into the “srcdoc” attribute, making it
impossible to dynamically generate an email via Django. The current
workaround is to be careful about the content of emails created in the
backend. This includes ensuring all HTML tags are correctly formatted. If a
closing tag is forgotten, it can disrupt the entire frontend page.

Another unresolved issue persists to the working mode of Django. At present,
only the debug mode is operational. When attempting to switch Django into
release mode or setting debug to false, problems arise. Libraries fail to load,
emails are not displayed correctly, and the formatting of the web application
is compromised. The root of this problem appears to lie with the static folder.
When Django is set to release mode, the static folder, which holds all content
for Bootstrap, JavaScript files, CSS files and images, isn't accessed as
expected.

One thing to keep in mind when using real emails is the potential issue with
external objects like images. There's a chance they might not load properly.
It's likely that the servers hosting these external objects could be blocking the
request. However, emails that link directly to external objects (for instance,
using the “src” tag in HTML code) worked fine in the application.

7.3. Feedback

Getting feedback from outside sources is an important part of any
development project. This approach was implemented in the creation of
PhishCoach. After each component of the application was developed, it was
presented to an individual not involved in the project. This fresh perspective
offered an unbiased opinion on the project's progress, helping to identify
areas that might need improvement or further clarification.

These feedback sessions were tremendously beneficial. While the team may
have found certain aspects of the project good and understandable, having
external viewpoints helped to reveal areas that might not have been as clear
to an outside observer. An example for this would be the bold text in the
email head highlighting the sender, recipient and subject. This continuous
cycle of development, presentation and feedback ensured that many issues
were quickly identified and rectified, ultimately leading to an application that
should be a lot more user-friendly.

22

7.4. Presentation

In preparation for Presentation Day, a series of slides were created to outline
the PhishCoach project. Knowing that the time limit for the presentation was
three minutes, a full day was set aside specifically for practicing the pitch.
The rehearsal allowed for a smooth delivery without exceeding the allotted
time or the need for physical notes during the actual presentation.
Nonetheless, some notes were brought on stage as a safety for potential
stage fright scenarios.

For the Media Night event, a more interactive setup was crafted. A small
stand with a tablet was set up, which was held up by a 3D-printed vertical
stand. This allowed visitors to easily notice and interact with the PhishCoach
application.

Throughout the Media Night, numerous visitors engaged with PhishCoach.
Initially, the setup included a quiz of ten emails, but it was soon adjusted to
five emails, as it became evident that ten was too lengthy and exceeded the
attention span of most visitors. An observation made during these
interactions was that users had an average success rate of around 80% in
identifying phishing emails from the presented examples. This suggested that
there was a 20% chance of people not recognizing a phishing email in a
similar real-life scenario, thus underlining the relevance and potential
usefulness of PhishCoach as a tool for raising awareness about email
phishing.

8. Discussion
This section offers an opportunity to reflect on the overall PhishCoach
project, shedding light on its potential applications, areas for improvement,
and a general review of the development process.

8.1. Potential Use Cases

PhishCoach holds potential as a practical teaching tool, particularly in an IT-
security lecture setting. Given that it allows for the creation of custom emails,
a professor could design a series of phishing examples that align with the
curriculum. This would keep students actively engaged while reinforcing key
course concepts in a real-world context. It provides an interactive way to
highlight the signs of phishing emails, thereby enhancing students'
awareness and understanding of this critical aspect of cybersecurity.

Similarly, PhishCoach could be beneficial in a corporate environment. The IT
security department within a company could leverage the application to
conduct hands-on phishing awareness training. By creating emails that are
specific to the company's context, employees can gain a better sense of the

23

kind of phishing attempts they are most likely to encounter. This could
improve their ability to recognize and avoid falling victim to real phishing
attempts. However, it's worth noting that the successful implementation of
PhishCoach in these settings hinges on the email creator's understanding of
realistic phishing email constructs.

Additionally, PhishCoach can provide significant value for older users who
may not be as familiar with technology. While this demographic may face
challenges in navigating new applications, they stand to benefit greatly from
the phishing awareness training provided by PhishCoach. Its simple, user-
friendly interface may prove particularly beneficial for these individuals,
promoting ease of use while enhancing their understanding and resilience
against phishing emails.

8.2. Improvement Capabilities

While the PhishCoach program fulfilled the Minimum Viable Product (MVP),
several areas could benefit from future improvements.

One such improvement relates to handling links. Currently, any customized
links needs manual formatting to fit the specific structure. This could be
streamlined with automation, either through a dedicated button that inserts
this link structure into the email content field in the admin panel or by text
parsing functionality that automatically replaces traditional links and enables
a link preview for PhishCoach.

Incorporating a means to suspend the current session and continue it
another time represents another potential upgrade. By allowing users to save
their sessions via cookies or a login setup, they could easily resume where
they left off.

A login feature would also pave the way for the inclusion of a high score list,
showcasing top scores and encouraging competition. Alternatively, the
system could provide statistics on performance rates across various
questions and the difficulty level of different emails.

A start page where users could define their names might also be a beneficial
addition. However, this could compromise the simplicity of the site, which
currently showcases only a maximum of two buttons.

Addressing database backup is another critical aspect. In the event of a
server failure, it's essential not to lose the entire database. An already
working but inelegant solution is to regularly copy the "db.sqlite3" file to a
separate location.

24

Also worth considering is a preview feature for the admin panel, which could
parse the text in the content field and display the rendered result. This would
need to synchronize the images, CSS, JavaScript and most importantly the
template files from the frontend to the backend. A current workaround for this
would be to mark the desired email as priority to make it appear first in the
application.

8.3. PhishCoach Review

The development of PhishCoach offered a great learning experience,
particularly in expanding understanding of Django, Python, HTML, CSS,
JavaScript and Bootstrap. Additionally, the experience with Visual Studio
Code improved, especially when it comes to coding in a shared environment
like GIT.

While not all additional features were able to be implemented, the minimal
viable product was achieved with some additional features. Creating the
emails was a particular challenge, as the perspective had to shift from
detecting phishing emails to crafting realistic ones. It was necessary to
conceal the obvious signs of phishing emails.

The presentation and Media Night went well. Most visitors walked away with
new insights. One observation was that concentrated reading reduces the
chances of a successful phishing attack significantly. Nevertheless, despite
the heightened alertness of users knowing that the application is a phishing
trainer, the project was successful in simulating as close to a real phishing
scenario as possible.

The workload division was justly managed. This was facilitated by the
consistent collaboration on the project, ensuring a balanced time investment
from all members with Jonas Koch focusing on the frontend and Steffen
Schawjinski on the backend. While the backend tasks were completed before
the frontend, this member could shift focus to researching and creating
phishing emails for the tool. A clear to-do list guided the team in distributing
tasks fairly throughout the project's duration.

Conclusively, PhishCoach's development proved both enjoyable and highly
educational. The end product provides a sense of achievement and the team
hopes that the tool will help prevent phishing attempts in the future.

25

List of References
Petrosyan, A. (2023, 07 19). statista. Retrieved from

https://www.statista.com/statistics/184083/commonly-reported-types-
of-cyber-crime-global/

Ponemon Institute. (2021). The Impact of the New Normal on Workplace
Privacy: A Study of Business & IT and IT Security Managers. 8-12.

