
Human Pose Estimation and its Application for
Visual Effects

Bachelor Thesis in the Course of Audiovisual Media

Submitted by: Roman Neugebauer

Supervised by: Prof. Katja Schmid
Michael Dohne

Stuttgart, 02.09.2018



Statutory Declaration
Hiermit versichere ich, Roman Neugebauer, ehrenwörtlich, dass ich die vorliegende
Bachelorarbeit mit dem Titel: „Human Pose Estimation and its Application for
Visual Effects“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als
die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut
oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter
Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder
in anderer Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen
Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7
Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4
Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen
ehrenwörtlichen Versicherung zur Kenntnis genommen

Stuttgart, 02.09.2018
Roman Neugebauer

ii



Abstract
Human Pose Estimation and its Application for Visual Effects

Recreating human movements is essential for the realization of many VFX-shots.
E.g., for animating CG characters or masking humans with rotoscoping. Meanwhile,
machine learning systems offer possibilities to estimate human poses with single
image inputs automatically. These systems propose workflows to simplify the
capture and manual recreation of human movements.

In this thesis, the use of such systems in standard VFX applications will be covered.
Primarily, focusing on realizing and evaluating a workflow to use 2D pose estimation
for rotoscoping, and secondly using and evaluating 3D pose estimation to animate
humanoid characters.

Kurzfassung
Die Verwendung von Human Pose Estimation für Visual Effects

Menschliche Bewegungen sind essentieller Bestandteil vieler VFX-shots. Z.B. Um
CG-Charaktere zu animieren oder Masken von Menschen zu erstellen. Mittels
maschinellem Lernen können menschliche Posen anhand von einfachen Bildern
automatisch ermittelt werden. Diese Systeme legen Workflows nahe, die das erfassen
und darstellen von menschlichen Bewegungen vereinfachen.

Dementsprechend wird in dieser Thesis die Nutzung solcher Systeme innerhalb von
standard VFX Software behandelt. Einerseits mit dem Fokus auf einem Workflow
um 2D pose estimation für Rotoskopie zu verwenden, andererseits um menschliche
CG-Charaktere mittels 3D pose estimation zu animieren.
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1 Introduction

Human movements and poses are essential for realizing a variety of VFX shots.
E.g., to display the performance of human or human-like, digital characters, or to
realize the interaction of human actors with digital elements. On the other hand,
to separate actors with rotoscoping, which means tracing their movements.

Figure 1.1: Pose Estimation

To process and work with human movements of
the real world, they have to be made digitally
usable. Either by manually recreating poses
and motion through animation or by explicitly
capturing the performance with motion capture
(Mo-Cap). These tasks usually involve lots of
manual work, or well planned, specific shootings
with sophisticated technical setups.

However, with the rise of machine learn-
ing in recent years, and the availability of
large-scale datasets [Parloff, 2016], machine
learning systems are able to estimate human
poses automatically and with single image in-
puts [Cao et al., 2016], [Kanazawa et al., 2017].
With that, they propose workflows, which could
benefit and simplify modern VFX production.

Besides a theoretical introduction, this thesis aims at the practical use of such
systems in a modern VFX workflow. Especially covering how the systems can be
used in combination with modern VFX applications and for which cases it benefits
VFX production. The work focuses on large-scale poses and movements of the
main limbs, disregarding animation of the face and hands.

The content of this thesis aims at people familiar with the standard software
and techniques in modern VFX, especially rotoscoping, compositing, rigging, and
animation.
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1.1 State of the Art

Motion Capture (Mo-Cap) describes a variety of techniques to determine how an
object moves in space. These techniques are currently the most common tools
to capture and further process human poses and movement. Thus, Mo-Cap can
be regarded as the state-of-the-art counterpart to human pose estimation. In
VFX-production, Mo-Cap is usually used as a realistic human-like fundament for
character animation. [Okun and Zwerman, 2010, p. 338 - 339]

The most popular high-end motion capture solutions base on optical locations, e.g.,
the OptiTrack system. The system works with multiple infrared sensors capturing
reflective markers on the joints of an actor. Triangulation calculates the joint
positions in 3D-space. Mechanical systems like xsens, measure joint angles with
sensors in a suit. Given the biomechanical data of the actor, movement and position
in space are calculated from the joint angles. [Kitagawa and Windsor, 2008, p. 8 -
10]

On the other hand, low-end solutions like the Microsoft Kinect capture human
poses with one single RGB-Camera, one infrared sensor and without a special suit.
Here the depth of every input pixel is calculated by triangulation. Humans poses
are then estimated by separating humans and recovering joint positions with depth
information. [Andersen et al., 2012]

These systems capture human poses and movements in real-time and are essential
parts of many VFX-workflows. Nevertheless, they come with limitations because of
their technical setup: While the infrared sensors only work with controlled lighting
and in a limited space, a suit cannot always be worn together with a costume.

As Mo-Cap does not work on an already shot plate, a 2D-equivalent to human
pose estimation would be separately planar tracking all body parts of a human.
The position of each tracked body part defines pose and movement. This bases
on tracing defined image features over time, but will not work, or need manual
user input, if significant lighting changes, heavy motion blur or other temporal
changes in pixel values occur. [Krishnant and Ravivt, ] Moreover, different body
parts occluding each other at times make continuous tracking difficult. E.g., planar-
tracking the limbs of an actor rotating around his axis is somewhat tricky. The
planar tracking data can and is often used to provide a fundament for animation
of roto-shapes.

Recent systems based on convolutional neural networks (CNN) show promising
results to estimate poses with simple setups. They can estimate 2D, and 3D human
poses with a single RGB-image input.

2



1.2 Motivation

I chose to use human pose estimation systems, based on CNN’s, and analyze the
use of such for visual effects. More precisely, systems that estimate human poses
with single RGB-images, as they could simplify common problems of rotoscoping,
rotomation or Mo-Cap.

Manually recreating human poses by rotoscoping or rotomation is usually very time
consuming and requires a lot of tedious work because an artist has to go through
every frame and make manual adjustments to match pose and shape of the subject.
Furthermore, for the simple recreation, no creative work nor input is needed. First
off, the goal is to exactly match the poses and movement of a filmed subject and
a digital character, respectively to match the edges and shape of a subject with
roto-shapes. Hence, automation of such tasks could benefit VFX-production. Pose
estimation can be the fundament for this: With HPE one can run pose estimation
on a plate and automatically acquire the poses of a captured human. The output of
pose estimation could be further processed to be used for rotoscoping or character
animation.

Rotoscoping a human is in principle the manual articulation of the human shape,
which bases on the corresponding pose [Okun and Zwerman, 2010, p. 570] . Thus,
roto-shapes can be automatically placed at the estimated keypoints, which provides
a fundament for refinement of the edges (see Chapter 3). Analogous, a character’s
skeleton can be animated according to the output of 3D pose estimation. In this
case, pose estimation is the fundament for the animation itself (see Chapter 4).

Furthermore, pose estimation can be advantageous over established Mo-Cap tech-
niques because of the simple setup: Respective systems, can output 3D keypoint
locations from a single RGB-Image. Consequently, only the plate - which is fun-
damental in any case - or a single witness camera is needed. This is useful for
decisions made in post-production, when no other information is available. On the
other hand, if the quality of pose estimation fits the needs, pose estimation can
make shooting more manageable, since no further hardware, other than a camera
is needed. As a result, production is not limited to a Mo-Cap studio and actors are
not limited to a specific motion capture volume, nor do they need to wear anything
for Mo-Cap.

In short: Pose estimation systems are promising regarding easy setups and for
decisions made in postproduction. Moreover, they could lead to the automation of
every day but monotonous tasks.

3



1.3 Structure

First, a theoretical introduction to human pose estimation will be given. This
covers the basic concepts of machine learning and the functionality of the used
pose estimation systems.

Chapter 3 is about the use of pose estimation for rotoscoping. After a quick
introduction into state of the art workflows, a new workflow using OpenPose is
described in detail, and completed with an evaluation of this workflow.

Analogous to Chapter 3, in Chapter 4 a workflow for using 3D pose estimation to
animate CG characters is described. Followed by an evaluation of the workflow.

Lastly, in Chapter 5 a conclusion from the gained knowledge is presented, and
further prospects and possibilities are discussed.
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2 Human Pose Estimation

Human pose estimation (HPE) is the study of obtaining human poses through
images, by recovering the location, respectively the orientation of the main body
parts. [Sigal, 2014, p. 1]

While modern Mo-Cap techniques capture the position and movement of an object
in space, HPE is about explicitly inferring poses of humans. The respective systems
base on machine learning and are especially trained on images of humans.

To work with these systems the fundamental theory behind machine learning will
be covered. Especially the functionality of the systems practically used for this
research

2.1 Representation of the Human Pose

The representation of human poses forms the basis, for the estimation of such. It
is fundamental to understand what the relevant systems output and how poses are
defined in standard VFX applications.

Biologically, the human skeleton is the basic structure for movement, and thus
defines body poses. This serves as a basis for the most common representation
of body poses as an kinematic tree x = τ, θτ , θ1, θ2, ..., θn. The root τ defines the
position of a pose, and the joint angles θ define the orientation of the body parts,
relative to their parent. The joints are defined by the directions in which they can
move, called degrees of freedom (DoF). One joint can be defined by one to three
DoF’s. E.g., the knee can only move in one axis and is thus defined by only one
rotational axis, while the neck-joint can move in all three axes. [Sigal, 2014, p. 2]
(see a) figure 2.1 on the following page)

Alternatively, the body pose can be defined parametrically by the position of
anatomical keypoints in either 2D - or 3D-space. E.g., x = p1, p2, ..., pn, with pi
being the 2- or 3-dimensional coordinate. [Cao et al., 2016] (see b) figure 2.1)

1source: https://www.researchgate.net/publication/277006934 - access: 2018-08-31
2source: https://www.learnopencv.com/deep-learning-based-human-pose-estimation-using-
opencv-cpp-python/ - access: 2018-08-31
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(a) Kinematic
Tree

(b) Keypoint
Locations

Figure 2.1: Pose Representations
12

This work aims at large scale pose estimation,
so representations generally define the human
main joints and rigid parts of the limbs and of
the torso (limbs: shoulder, elbow, wrist, knee,
and ankle. Torso: head, neck and hip).

This work covers pose estimation for rotoscoping
and for CG characters. Human poses are defined
differently for both: Poses of a CG character
are principally defined by its skeleton. Which
is such a described kinematic tree, bound to-
and thus moving a mesh. Accordingly, one can
transfer estimated joint angles onto a characters
skeleton. [Okun and Zwerman, 2010, p. 345]

Rotoscoping, on the other hand, bases on mattes created with bezier curves or
b-splines [Okun and Zwerman, 2010, p. 570]. These mattes are controlled by 2D
control points and do not relate explicitly to any form of humanoid body pose
representation. However, for rotoscoping a human they can be geometrically
transformed according to anatomical keypoint coordinates, consequently relating
human pose and roto-shapes (see Chapter 3).

Human movement can be seen as the succession of poses. So poses continually
estimated over time can define the movement of a subject and thus the animation
of a character or roto-shapes.

2.2 Machine Learning

A machine learning system adapts the processing of a given dataset, in regard to
the functional context of input and output. In contrast, a regular algorithm always
processes a specific input the same way. [Goodfellow et al., 2016, p. 98 - 99]

As a formal definition:

”A computer is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.” [Mitchell, 1997] cited in
[Goodfellow et al., 2016, p. 99]

For human pose estimation T would be to output keypoint locations, E would
be training with datasets that contain pictures of humans and are labeled with
keypoint locations, and P would be the accuracy of the estimation.

6



2.2.1 Artificial neural networks

Figure 2.2: Basic feedforward network3

Since the human brain is the most efficient learning system we know, the structure
of the human brain is reconstructed for machine learning. These reconstructions
are called artificial neural networks, and build the basis for pose estimation. They
consist of neurons that transmit data through different layers. Every network
consists of an input layer, one or multiple hidden layers to process input data, and
an output layer. There are two different types of networks: Feedforward neural
networks, where information is passed forward in one direction, and recurrent
neural networks, which allow loops inside the networks. [Nielsen, 2015, p. 14 - 16]

Figure 2.3: Structure of a Neuron4

In a basic network, the input of each neuron is the weighted sum of each neuron in
the previous layer (See figure 2.3 on the following page). The sum is put through

3source: https://medium.com/technologymadeeasy - access: 2018-08-31
4source: https://medium.com/technologymadeeasy - access: 2018-08-31
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an activation function. This activation function is a fixed mathematical operation
to determine if a neuron fires or not, which bases on the sum at the input of the
neuron. Nowadays the ReLU activation function is the most common. It thresholds
the input at zero (f(x) = max(0, x)). [Goodfellow et al., 2016]

To understand the basic functionality, the architecture of a neural network to
classify handwritten digits is often used: The fundament is a dataset containing
grey scale images of handwritten digits. The images are 28 x 28 = 748 pixels, so
the input layer would consist out of 748 neurons, one for each pixel. The output
layer consists of 10 neurons, one for each digit to be classified (0...9). The hidden
layer, between input and output, consists of 15 neurons. If the network is given a
specific input digit, ideally the corresponding output neuron fires. [Nielsen, 2015,
p. 16 - 18]

In the hidden layer the classification is broken down into simpler concepts. E.g.,
one specific neuron emphasizes only pixels that are part of a curve in the upper left
part. This neuron, along with other neurons detecting curves in different parts, can
be weighted heavily at the specific output neuron, which detects zeros. Causing
this output neuron to fire. So the weights are the parameters of every network,
emphasizing specific features in the dataset, to trigger a specific output. These
weights are not defined by humans beforehand but are learned during training.
[Nielsen, 2015, p. 16 - 20]

In other words: With any input x and a desired output function f(x) the network is
trained to approximate the output function by adjustment of the weights. A network
defines a set of functions and the weights are the parameters of these functions.
The universal approximation theorem shows that a neural network with at least
one hidden layer can approximate any function. [Guliyev and Ismailov, 2016]

Deep learning

The principle of working with multiple hidden layers to solve complex problems is
known as Deep Learning. E.g., a first layer to detect edges from an input-image,
the second layer then recognizes specific collections of edges as contours. A specific
collection of contours then would be recognized by the third layer, as a specific
body part, and finally a collection of body parts can be recognized as a human.
[Nielsen, 2015, p. 48]
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2.2.2 Learning methods

Supervised learning

In supervised learning, the system learns to predict an output value from an input
value, but with a known desired output. Therefore supervised learning algorithms
base on datasets that contain specific labeled features. Without the right dataset,
it is not possible to train such a network. Eventually, the results depend on the
quality of the dataset. These systems are trained by comparing the desired output
to the output of the neural network. [Goodfellow et al., 2016, p. 105]

In unsupervised learning, there is no known desired output. Of a dataset containing
many different features, useful structures are learned. Classification and denoising
tasks often use this type of learning. However, it is currently not relevant for pose
estimation and the systems used in this research, which is why I will not go into
further details.

Overfitting

Overfitting occurs when a network performs well on training data but not in-the-
wild. Since deep networks can approximate complex functions, overfitting occurs
when the network approximates the noise of the training data as well as the relation
between input and output. To prevent that, a defined number of neurons can be
deactivated (dropout), causing a more general output. [Goodfellow et al., 2016, p.
110]

Furthermore, the quality of the dataset influences how well a network generalizes.
E.g., for 3D-Pose Estimation, images of people with labeled 3D joint position are
only available in controlled surroundings, in a MoCap-Studio or similar. Therefore
a system only trained on images of people in a MoCap-Studio will not perform well
with more general input. [Mehta et al., 2016]

Datasets for pose estimation

As already mentioned, the datasets are crucial for training neural networks. The
following datasets are used for pose estimation. All of these contain images of
humans, with position-labels of the main body joints. However there are some
slight differences which parts are labeled. The values of a dataset are call ground-
truth-values.

9



1. MPII: Contains about 25.000 images with 40.000 people. These images are
single frames collected from youtube-videos, based on searches of different
human activities. [Andriluka et al., 2014]

2. COCO: Contains images with about 250.000 people, besides other ”common
objects in context”. The images were collected from flickr with regard to being
”non-iconic”, so not especially staged, but real-life examples. [Lin et al., 2014]

3. Human 3.6M: Consists of 3.6 million video frames of actors performing
multiple life-like situations. The images are labeled with 3D keypoint locations,
acquired with optical marker-based Mo-Cap in one specific surrounding.
[Ionescu et al., 2014]

4. MPI-INF-3DHP: Contains 1.3 million video frames of actors captured with
a markerless Mo-Cap system in front of green screen. To imply different
surroundings, and better generalization, actors are separated and in integrated
into life-like surroundings. [Mehta et al., 2016]

2.2.3 Training

Training is the key to getting the desired output of a neural network. Before
training the weights are initialized with random values, and the output of the
system is not significant. During training the weights are adjusted to get the
desired output from a network.

Neural Networks are trained with a process called back-propagation. It consist out
of three steps:

Forward-Pass: The input-data x is passed through the network, generating a
specific output a (x).

Calculate Error: The output is compared to the desired output, specified by the
dataset (ground truth values) with a specific error-function C:

C = 1
2n
∑

_x‖y−a‖ˆ2

Backward-Pass: The gradient of C in regard to each weight is calculated. Then
the weight is moved by a defined learning-rate η towards the minimal error:

ωnew = ωold − ηδC
δw

This is repeated until the error converges towards the lowest value. (For all steps,
see [Nielsen, 2015, p. 26 - 28])
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2.2.4 Convolutional neural networks

Convolutional neural networks, are artificial neural networks, which base on the
convolution of input data. Due to efficiency, these types of networks are currently
the most common.

Convolution

Figure 2.4: Convolution with a 3x3 kernel5

Convolution is the basic operation in any CNN. Given a 2D Image I, and a filter
kernel K with the size (w ∗ h), the convolution I ∗K is the scalar product of the
input and the filter coefficients. The filter is applied at any possible position of the
image. The step-size defines how often the filter is applied. Larger step-sizes cause
a smaller output. To control the size of the output, zeros are added around the
border of the input. This is called zero-padding. [Goodfellow et al., 2016, p. 331]

Figure 2.5: Output of a convolution.6This is the x-component of a sobel edge

detector with the following kernel:


1 0 −1
2 0 −2
1 0 −1


5source: https://gasimof.com/tag/convolutional-neural-network/ - access: 2018-08-19
6source: [Goodfellow et al., 2016]
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Convolutional layer

In a convolutional layer, convolution filters are applied to the input. The filter
kernels are not defined beforehand, but are learned during training. Consequently,
important features in the training dataset are extracted by the learned filters.
The output of such a layer is the convoluted input, and called a feature map.
[Goodfellow et al., 2016, p. 335]

The convolution operation has several benefits: In a CNN with a filter kernel
that is smaller than the input, one input neuron would only contribute to specific
neurons in the next layer. Pixels in specific parts will contribute to specific parts
of the feature map. For one feature map, the same filter is applied on all neurons,
contributing to the feature map. In contrast, in a regular NN every input neuron
is connected with a specific weight to every neuron of the next layer. Every weight
is used only once. [Goodfellow et al., 2016, p. 335]

E.g. given an input image with 72 ∗ 72 pixels a convolution with a 3 ∗ 3 kernel and
a stepsize of 1, the output would be 70 ∗ 70 pixels big. The convolution would need
70 ∗ 70 ∗ 9 = 44100 operations. However, in a regular NN, the same output through
matrix multiplication would need 72 ∗ 72 ∗ 70 ∗ 70 = 25401600 operations.

So CNN’s are more efficient than regular neural networks because less storage and
fewer operations are needed. This makes the processing of bigger images possible
and training with back-propagation faster.

Other Layers

Besides convolutional layers, these type of networks also contain so called pooling-
and fully connected layers.

Pooling layers simplify the incoming data, in a way that small changes in the
input do not change the result. This will also reduce the size of the incoming data.
Common operations are max- or min-pooling, keeping only the highest- or lowest
values of one specific area. [Goodfellow et al., 2016, p. 339, 342]

The fully connected layer defines the output of the network at the end of a CNN.
The neurons are connected to every neuron in the previous layer and work like a
regular NN

2.2.5 Pre-Trained networks

CNN’s are not build from scratch for a specific use, but often base on already trained
networks. The output of so called pre-trained networks can be used for further
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processing, or a pre-trained network is refined for a specific use. Typically, networks
for image classification are refined for human pose estimation. [MathWorks, 2018]

Pre-trained networks output satisfactory results on specific large-scale datasets.
When refining such a network, it is given an unknown dataset with other specific
features. Typically, the first layers and weights of the pre-trained network, to
infer low-level features, are kept. On top of these layers, new layers for specific
new features are added, and the whole network is trained on a new dataset.
[MathWorks, 2018]

The systems used for this work, base on the pre-trained networks VGG-19 and
ResNet-50. Both of these are trained on datasets of the ImageNet database and
classify objects in images into one of 1000 categories. [Kanazawa et al., 2017],
[Cao et al., 2016]

2.3 2D pose estimation

2.3.1 Functionality and available systems

2D pose estimation aims to localize anatomical keypoints in an image. This problem
is usually treated as a supervised learning problem because large and diverse datasets
with annotated keypoints exist. The estimated poses are either represented as 2D
keypoint coordinates or by more complex representations. E.g., the DensePose
system defines all pixels belonging to a specific body part [Güler et al., 2018]. This
would offer a full rotoscoping alternative, as one can use the allocated pixels
belonging to a human, as a matte. Moreover, neural networks trained for object
detection and image segmentation can output mattes for a variety of objects in an
image [Chen et al., 2017]. However, any inexact edge provided by such a complete
solution would need to be redone entirely. So I decided to use keypoint locations
as a fundament for the transformation of roto-shapes, which can be further refined
by an artist.

With images containing multiple humans, the keypoints belonging to one human
need to be associated with each other. This problem can be solved by running a
person detector beforehand, and then estimate poses per person, but faulty person
detection will result in faulty pose estimation. Additionally, this approach extends
runtime per person. The OpenPose system proposed by Cao et al. efficiently
and implicitly solves this problem by simultaneously predicting part-affinity-fields.
[Cao et al., 2016]
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The OpenPose system was further used for this research because it efficiently
outputs keypoint locations for multiple persons. Moreover, it was chosen, because
it has already implemented features to export the estimated keypoints, it is the
winner of the 2016 COCO Keypoint Challenge and open source.

2.3.2 OpenPose

Figure 2.6: OpenPose pipeline7

OpenPose is a system for 2D human pose estimation of multiple people. The
system works in real-time - on a gtx1080 at around 9fps. The system bases on two
branches of a CNN. Given an input image, one branch predicts confidence maps of
the keypoints, one for each part. The second branch simultaneously predicts part
affinity fields, one for each pair of two keypoints. [Cao et al., 2016, p. 2]

The first branch is directly trained to predict keypoints with the ground truth
data from the COCO and MPII human pose datasets. To keep close peaks
distinct, the maximum of each confidence map is defined as the corresponding part.
[Cao et al., 2016, p. 3]

When multiple humans are in the frame, parts can have multiple connections to
each other. To output the pose for each human in the frame, the parts belonging
together need to be associated with each other. E.g., one right shoulder could be
connected to multiple predicted right elbows. OpenPose accesses this problem with
a feature called part affinity fields (short PAF). Here the definition by Cao et al. :

”The part affinity is a 2D vector field for each limb, also shown in
Fig. 1d: for each pixel in the area belonging to a particular limb, a 2D
vector encodes the direction that points from one part of the limb to
the other. Each type of limb has a corresponding affinity field joining
its two associated body parts.” [Cao et al., 2016, p. 4]

So for each pixel belonging to a specific limb the direction of the limb is defined
(See c) figure 2.6 on the previous page). The ground truth part affinity fields are
defined by the position of the ground truth keypoints. [Cao et al., 2016, p. 4]

7source: [Cao et al., 2016]
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Given the part candidates and the part affinity fields, every possible connection
between two parts is scored in regard to the PAF. For that, the alignment of
the limb, which contains the two part candidates, and the corresponding PAF is
measured. Then the connections are sorted by its score. The connection with the
highest score is valued as a final connection. If the next highest score does not
contain any part of an already final connection, it is a final connection. Otherwise,
it is rejected. This is repeated until all parts are connected. [Cao et al., 2016, p. 4]

Finally, the connected pairs need to be associated with the corresponding human.
To achieve that, every pair is defined as one human. Now if two humans share the
same part, they are defined as one human. This is repeated until there is no pair
of humans sharing one part. [Cao et al., 2016, p. 5]

2.4 3D Pose Estimation

2.4.1 Key challenges

Estimating 3D poses from monocular RGB images includes additional difficulties.
Out of an image, anatomical keypoints need to be localized, and reasonable positions
of the keypoints in 3D space have to be inferred.

Handling 3D Pose Estimation as a supervised learning problem comes with limita-
tions. When a CNN is trained on images with annotated 3D keypoints to output
3D estimates, the main problem is the lack of sufficient datasets. 3D keypoints
cannot be labeled by hand, but can only be acquired in a MoCap-Studio or similar.
So images with accurate labels are only available in controlled surroundings, and
not in-the-wild. As a result, systems trained in such a way, do not generalize well.
Metha et al. presented a synthetical dataset to counter this problem. It consists of
multiple humans captured by a markerless MoCap-system and in front of a green
screen. These subjects are integrated into general surroundings. This lacks realistic
image qualities in terms of lighting and integration, but is closer to the variety of
in-the-wild images. [Mehta et al., 2016]

Another significant problem with single image systems is the location of poses in
space. With multiple image systems, the depth information can be calculated by
triangulation, but a single image does not provide any depth information.

15



2.4.2 Functionality and available systems

To solve the problem of 3D pose estimation multiple approaches exist. First off,
are approaches treating 3D pose estimation as a supervised learning problem, but
as they will not generalize well (see the previous section), the use on any filmic
plate or another general environment is not useful.

Other approaches consist out of two different steps. First, 2D keypoint positions are
estimated. Subsequently the 2D positions are analyzed by another network, which
is trained to estimate 3D positions out of the 2D positions. However multiple 3D-
skeletons projected onto the image plane, can fit one 2D-skeleton. So assumptions
about the human captured, need to be made beforehand. In this case, other image
data besides the 2D joint positions is not used for the 3D estimation and the models
need longer to train and compute results. [Kanazawa et al., 2017, p. 3]

Out of the publicly available systems, human mesh recovery (HMR) presented by
Kanazawa et al., is one of the most promising ones in regard to VFX. The system
implicitly predicts local joint rotations and a camera. So joint positions can be
calculated relative to the camera, and joint rotations do not need to be separately
extracted by an IK-Solver. The system will always output a complete skeleton
and can even estimate a mesh, representing the human in the frame. Furthermore
it is trained on unpaired 2D joint annotations and 3D skeleton data, therefore
generalizing well. [Kanazawa et al., 2017]

In addition to HMR, the VNect System [Mehta et al., 2017] and RADiCAL Mo-
tion [Solutions, 2018] are promising. Both systems output a complete skeleton.
Additionally to HMR, the skeleton moves in space. They show promising results in
general surroundings. Moreover, the output of these systems can be used similar
to known Mo-Cap systems. RADiCAL motion is a commercial product and its
inner workings are not public, but movement in space is presumably acquired
analogous to VNect, because the field of view of the used camera has to be set
before processing: The estimated 3D keypoints are projected onto 2D keypoint
locations. With the camera location that works best for this projection, the subjects
position in space, relative to the camera can be infered.

VNect is not publicly accesible yet, so HMR and RADiCAL were practically used
for this research. As the character design of CG characters is highly specific and
developed early in production, it was chosen not to use the output mesh of HMR,
but the underlying skeleton. The aim is to pose and animate any rigged character
with the HMR output.
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2.4.3 Human Mesh Recovery

Human Mesh Recovery (HMR) introduced by Kanazawa et al. is a framework for
estimating full 3D meshes of humans.

The output mesh is represented by the SMPL model to describe human bodies.
This model bases on a humans height, weight and body proportions as well as
the pose. The pose representation of the model was further used (see Chapter
4). The pose is represented by joint rotations, that belong to a kinematic tree.
[Loper et al., 2015]

Given images with annotated 2D joint positions, the network is trained to estimate
the parameters of the mesh in a way, that the 3D joint positions match the annotated
2D joint positions after projection. This is achieved by iteratively regressing the
reprojection error during training. If ground truth 3D data is available for an image,
the network is additionally trained with direct supervision. [Kanazawa et al., 2017,
p. 5]

Since certain combinations of joint rotations could fit the 2D joint positions after
reprojection, but would not represent a realistic human body, a discriminator
network checks if the output is a valid human pose. This network consists of
one discriminator for each joint, trained to learn the angle limits for those. The
discriminator network is trained on 3D meshes of human bodies, that do not
necessarily need a corresponding image. [Kanazawa et al., 2017, p. 5]

2.4.4 RADiCAL Motion

RADiCAL Motion offers an application for complete pose estimation based Mo-Cap.
One can capture and upload a video, the processing happens on their servers, and
the results can directly be downloaded as an animated rig. The service is supposed
to work in any environment and on videos captured by any device. [Solutions, 2018]

The cloud based approach comes with restrictions, as the service is not free to use
and one has pay depending on the length of estimated videos. [Solutions, 2018]
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3 Rotoscoping with Open Pose

Rotoscoping with OpenPose describes a possible workflow to use pose estimation as
a fundament for rotoscoping. Pose estimation can be triggered on any plate, which
requires rotoscoping of humans.The location of continually estimated keypoints is
then used to position roto-shapes accordingly.

In this chapter, such a workflow is described, and it is further analyzed if this can
benefit and simplify the process of rotoscoping while comparing it to the current
best-practices.

3.1 Rotoscoping

Rotoscoping refers to tracing the movement of a captured subject. It is a basic
technique to separate certain elements in a VFX-Shot. This is achieved by manually
drawing the edges of the element to separate, most commonly with bezier-curves or b-
splines, and thus generating an alpha matte of the element. To trace the subject, one
has to manually adjust the control points of the shapes. [Okun and Zwerman, 2010,
p. 570]

One of the key challenges in rotoscoping is to separate one or multiple moving
actors. This process requires a lot of manual labour and can be very time consuming.
To ensure accurate and consistent edges, while rotoscoping humans, the following
best-practices have been established:

1. Using as few keyframes as possible.

2. Using multiple simple shapes, rather than one complex shape. For humans
usually one shape per limb is used.

3. Adjusting shapes as a whole, rather than single points.

Additionally, planar tracking is often used to aid rotoscoping. In this case the
movement of manually selected limbs and body parts are tracked over time. The
roto-shapes are then be transformed based on the tracking-data, to match the
movement of the tracked limb. The software Mocha by Boris FX is most often
used for this purpose.
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3.2 Used Software and Tools

The workflow uses the Foundry’s Nuke, as it is the industry’s standard compositing
software. The gizmo itself bases on the integrated nodes and expressions, as well
as Nuke’s python API. It aims at the use with Nuke’s standard roto nodes: Roto
and Rotopaint.

With the respective roto nodes one can create and edit Bezier and B-spline shapes.
During rotoscoping the principal work happens in the Roto-Tab: One can edit
the shapes, set keyframes, and edit opacity and feathering. Furthermore, global
transformation of the shapes can be controlled with the Transform-Tab: For every
shape created, one can set, edit and animate translation, rotation, scaling and
skew. This functionality was used to integrate OpenPose data into the rotoscoping
workflow. [Foundry, 2018]

3.3 Workflow

Figure 3.1: Workflow for rotoscoping with OpenPose

Figure 3.1 shows the general workflow for rotoscoping with OpenPose. Central
part is a gizmo for Nuke, triggering pose estimation, and processing the pose data
to be used with roto-shapes.

With this gizmo, edges are not automatically traced, but the basic motion of the
roto-shapes is automatically acquired through pose estimation. As a consequence,
no tracking of specific limbs is necessary. This is an alternative to tracking all limbs
of an actor with mocha. It is important that the mentioned best practices (see
previous section) for rotoscoping can be realized when working with this gizmo.
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3.3.1 Pose Estimation

An artist can start pose estimation on the desired plate, directly from Nuke. This
happens through a command line call, starting OpenPose for the chosen image
sequence or video.

(a) OpenPose output8 (b) OpenPose estimates and correspond-
ing rotos in nuke viewer

Figure 3.2: Keypoint order and corresponding roto-shapes

During pose estimation, OpenPose will output a JSON-File for every frame. The
JSON-File contains the 2D-Location for each estimated joint. To distinguish the
different joints, they are saved in a specific order (see a) figure 3.2). The output is
normalized to [0,1] to avoid errors caused by different formats.

3.3.2 Import

After pose estimation, the results are imported into nuke. Inside the gizmo the pose
data is stored in a node with translation-knobs, storing the (X, Y ) coordinates for
every keypoint. To import the estimated pose-data, the JSON module in python
is used. The import simply sets keyframes on every frame for every successfully
estimated keypoint.

8source: https://github.com/CMU-Perceptual-Computing-Lab/openpose - access: 2018-08-19
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(a) main panel (b) filter options (c) node graph

Figure 3.3: User Interface of the OpenPose Gizmo

3.3.3 Connect Roto

The gizmo defines movement for roto-shapes, which cover specific body parts and
limbs. For the limbs, movement is defined by the two keypoints at the limbs ends,
whereas the torso moves according to both shoulder- and hip keypoints. The head
moves according to the head- and neck estimates. Feet and hands are not defined,
because they would only be represented by one keypoint, which does not work for
automatic scaling and rotation. (see b) figure 3.2 on the previous page)

After import, an artist has to create roto-shapes, at least one for each body part
and limb, and adjust them for a single reference frame in a way that fits the subject.
Ideally, one chooses a neutral pose as a reference frame, to ensure appropriate
scaling and placement of control points. It was chosen not to automatically create
the roto-shapes, as a well-considered distribution of control points is crucial for a
clean result. E.g., uneven edges require more control points, than straight ones.

To ensure that each shape moves along with the corresponding limb, a connection-
panel was implemented. An artist has to connect the roto node to the gizmo’s
roto-input, and can then manually choose the name of a roto shape and set the
matching body part or limb. To keep a clean and reasonable node graph, when a
roto node is connected to the gizmo, all its channels will be forwarded through the
gizmo and can be accessed at its output.

3.3.4 Transformation of Shapes

Based on the translation data of each keypoint, the transformation of each limb
and bodypart and the corresponding roto-shapes is calculated. This is achieved
with an expression linking the XY-knobs that contain the pose estimation data
and the transform-knobs of the roto-shapes.

21



Given the two joint positions J1 = (x1, y1) and J2 = (x2, y2), and the corresponding
differences ∆x = x1 − x2 and ∆y = y1 − y2 transformation, rotation and scaling of
the limbs can be calculated with the following functions:

translation : tx = (x1 + x2) ∗ 1
2 , ty = (y1 + y2) ∗ 1

2

rotation : α = arctan(∆x,∆y)

scaling : s =
√

(∆x ∗∆x) + (∆y ∗∆y)

When connecting the shapes to the pose estimates, reference values for this frame are
set. This way the prepared shapes are not being transformed in the reference frame.
Transformations for any other frames are calculated in regard to the reference
frame:

translation : tx = xcur − xref , ty = ycur − yref

rotation : α = αt − αref

scaling : s = scur/sref

During rotoscoping, the artist can grab the pose estimates, which will directly
affect the transformation of the shapes (see figure 3.4 on the following page). This
is meant for the clean up of specific estimates over a certain frame range.

However when tracing the exact edges, it can and should be done directly on the
roto-shape. The gizmo only affects the transform-knobs, hence keyframes of the
shape can be set separately and on top of the provided animation.

3.3.5 Temporal Filtering

Temporal jitter in the pose estimation data, which results in inconsistent edges, is
one major problem when rotoscoping with the help of pose estimation (more on
this in section 3.3). To reduce this problem, the animation curves for each keypoint
can be filtered.
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(a) no adjustment (b) manual adjustment

Figure 3.4: Manual Adjustment of Estimates

Nuke offers an already implemented smoothing function for animation curves. This
is based on box filtering of the curve, so the filtered value of one keyframe is
the average value of its neighboring frames [Rueter, 2010]. This filter can reduce
temporal jittering, but the results are not satisfying. If the jitter is reduced
adequately, local maxima and minima of the animation curves are averaged out,
which introduces temporal latency.

Curve Simplification

The user can apply the curve simplification algorithm by Onder et al., which
was presented to specifically clean up MoCap data by reducing keyframes. Any
keyframes over a certain threshold are not affected, while keyframes below a certain
threshold are deleted, consequently smoothing the curve and reducing jittering.

1. Find start and end frame of the animation and set a keyframe (see b) figure 3.5
on the next page)

2. Find the frame with the biggest error value between original animation, and
the new curve. Then set a keyframe with original values. (see c) figure 3.5
on the following page)

3. Repeat the process for two new segments, between first and middle keyframe,
and between middle and last keyframe (see d) figure 3.5 on the next page)

4. Repeat step 3 for every new segment until the highest error frame is lower
than a defined threshold.
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The implementation in python is bases on the script provided by Richard Frazer
and was adapted for the gizmo. [Frazer, 2015]

Figure 3.5: Graphical explanation of the Curve Simplification Algorithm9

1€ Filter

Besides the curve simplification algorithm, jittering can be reduced with the 1€
Filter [Casiez et al., 2012]. This is a speed-dependent low-pass filter, which requires
minimal resources.

The filter aims at the general problem that temporal latency is more obvious for
fast movements, while jitter is more obvious for slow movements.

9source: [Onder et al., 2008]
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As temporal jitter is high frequency, but human movements have lower frequencies,
the signal is filtered with a low-pass. Any signal above the cutoff frequency fc is
weakened, whilst other signals are not affected. A low cutoff frequency will result
in smoother motion but cause temporal latency. To avoid this fc increases when
the speed increases. fcmin

is the lowest possible cutoff frequency, defined by the
user. X̂ is the derivative of the signal, in other words: The speed of the movements.
[Casiez et al., 2012]

fc = fcmin
+ β

∣∣∣X̂∣∣∣
The user can decrease fcmin

, until jittering is minimized suitably. Then β can be
increased to reduce temporal latency.

3.3.6 Workflow Considerations

The following details need to be considered to integrate the gizmo into a studios
compositing pipeline. While compositing usually happens on 16Bit EXR- or DPX-
Sequences, OpenPose currently cannot decode these files. However Jpeg’s or png’s
can be analyzed, so it is necessary to export a sequence of either of those, with
low compression and in full resolution. This could happen automatically when
starting pose estimation from within Nuke, or it could happen beforehand, during
the export of plates, as such a sequence is often used for match-moving as well.

Furthermore, the directory for the OpenPose output needs to be specified. Locating
it inside the compositing or roto folder of the specific shot is plausible, as an artist
could check the existence and the completeness of the JSON files for troubleshooting.
This directory could be automatically generated, according to the pipeline specific
shot data, when calling OpenPose.
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3.4 Evaluation

To analyze the usability of rotoscoping with OpenPose, the workflow was carried out
for several test shots. These tests included different types of an actors movement,
multiple camera movements and a variety of lighting situations. The shots were
done in front of different non homogenous backgrounds. Any filmic plate, where
rotoscoping is necessary, would neither contain a homogenous background. All
plates were acquired with a standard 180° shutter and 25 fps, to match temporal
resolution of filmic plates.

To test the speed of the proposed workflow for rotoscoping, edges of the roto-shapes
belonging to specific limbs were refined. For a variety of shots, a shape with a
varying edge, due to clothing for example, and a shape with a clean edge, e.g., a
plain limb, was refined. This was compared to the speed when rotoscoping based
on planar tracking. The shapes were refined for 50 to 70 frames, depending on the
shot.

(a) unusual pose (b) occluded limb (c) cropped input

Figure 3.6: Images relevant for the evaluation

3.4.1 General Performance

OpenPose works well, when checking individual frames. Out of the 2945 frames
analyzed with OpenPose, only around 5% were visually mismatched. The mis-
matched frames needed cleanup to be used for rotoscoping, due to failure cases
described in the next section.
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Figure 3.7: Comparison of animation curves of mocha, original OpenPose Data and
after 1€ filtering.

Besides visually correct location, the movement and temporal consistency are
relevant, when driving roto-shapes with the results of pose estimation. While
reviewing a series of frames individually, the poses and joints seem to be correctly
located. However, when reviewing continuous frames, temporal jittering is a
significant issue. This was the case for every testshot analyzed, but it is less evident
for fast and complex motion. One can clearly see the jitter in the animation
curves (see figure 3.7). OpenPose estimates human poses for every single frame
individually, and no temporal filter is applied. Thus slight inaccuracies of the
predicted joint positions will lead to temporal jitter. One has to note, that even
datasets contain some noise, as a visual label of an anatomical keypoint cannot
always be at the same position for different images, due to differing perspectives,
human shapes, and visibility.

Regarding rotoscoping temporal jitter is an unacceptable artifact. This would
require animation for almost every frame to counter the jittering and keep a constant
edge. When using planar tracking in contrast, an explicitly defined set of pixels
can be tracked accurately over time, and relative to a reference frame. This can be
observed when comparing the animation curves for both methods (see figure 3.8
on the next page).

To counter the temporal jittering the two filters, described in section 3.2.5 were
implemented. The results of the 1€ filter are generally more accurate, if fcmin

and
β are chosen reasonably.

3.4.2 Failure Cases

Cao et al. describe multiple cases, in which pose estimation for an individual
frame fails [Cao et al., 2016]. For these cases I observed the following in regard to
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Figure 3.8: Jittering roto shape that would require counteranimation

rotoscoping:

Unusual poses: Unusual poses fail because they are rarely represented in the
dataset. Hence the network is not trained for these poses. In this case, most of the
main joints are not correctly located, and the data cannot be used for rotoscoping
at all. (see a) figure 3.6 on page 26)

Occluded limbs: OpenPose fails on occluded keypoints. Estimates of the occluded
body part are often predicted at a similar location, as the corresponding body part.
E.g., with an occluded right elbow, the right elbow is estimated at the position of
the left elbow. The rest of the skeleton is not influenced. Occluded body parts do
not matter for roto, because they are not visible. Moreover, false predictions are
highly visible in the animation curves of the estimates. As a result these moments
can be quickly cleaned up by deleting the according keyframes. (see b) figure 3.6
on page 26)

Overlapping persons: In this case, the keypoints are correctly detected, but the
prediction of PAF’s is erroneous and keypoints are not correctly associated to a
body part and a human. For the frames with overlapping persons, the data would
need to be manually cleaned up.

Occlusions and overlapping person also disrupt planar tracking. A unusual pose
itself would not be an issue for planar tracking, since any defined pixels can be
tracked. Moreover, when two people overlap, at least the person in the foreground
could be tracked consistently.

Cao et al. also mentioned false predictions on humanoid statues and similar.
However this does not influence the successful pose estimation of other humans in
the frame, and therefore is not relevant for rotoscoping.

28



OpenPose Mocha
prep 4:00 15:00

walking/lower arm 11:30 10:25
walking/lower leg 19:00 17:40
walking/upper leg 14:00 12:45

prep 4:00 6:00
gesturing/lower

arm 6:45 5:40

gesturing/upper
arm 5:40 3:50

gesturing/torso 6:00 4:45
(a) slow movements

OpenPose -
prep 4:00 0:00

running/lower leg 13:30 16:00
running/upper leg 8:10 11:30
running/torso 12:00 14:00

prep 5:30 0:00
dancing/lower

arm 15:00 17:00

dancing/upper
arm 12:40 14:30

dancing/torso 9:00 11:00
(b) fast movements

Table 3.1: Spent time for the adjustment of roto shapes (in minutes)

3.4.3 Slow Movements

To test regular movements, the subject was filmed from several perspectives and in
front of multiple backgrounds, while walking or standing still and gesturing.

In these tests, jittering was vey obvious, especially when the actor was momentarily
standing still. When the actor is constantly moving, the results of the 1€ filter
are satisfying. But in moments of minimal movement, e.g., when stopping after
walking, jittering remains. In these situations one can use the curve simplification
algorithm or manually delete according keyframes.

As a consequence, especially minimal changes in movements are not estimated well.
With minimal movement, the signal to noise ratio is very low. An issue that still
remains after filtering. Mocha, on the other hand, captures these movements pretty
well.

According to that, refinement of roto-shapes on top of OpenPose took longer than
on top of Mocha-tracks: On average about 12%. This does not count in the time
spent mocha tracking. For easy-to-track shots, without occluded limbs and high
contrast, mocha tracking took less than 12% of the time and thus outperforms the
OpenPose-workflow in terms of speed. (See table 3.1)

For movements, that require extensive manual adjustment of the mocha-tracks,
around 25% of the time adjusting was additionally spent on tracking. The time
spent for the OpenPose workflow only depends on the length of the shot. During
testing this was around 10% of the time spent for refinement. Although adjustment
take longer on top of OpenPose, even more time is spent during preparation. (See
table 3.1)
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3.4.4 Complex Movements

(a) succesful pose estimation with
high motion blur

(b) mocha reference
frame

(c) mocha failure

Figure 3.9: Performance in regard to motion blur

Complex movements were tested with the subject running, rotating around his
axis, jumping, and changing direction.

Pose estimation on fast movements did work out well, since the jittering was less
noticeable and it worked considerably well on frames with a lot of motion blur.

With more movement of the limbs, slight inaccuracies over time have less influence.
Essentially, the signal to noise ratio is higher, and jittering is less obvious, but still
needs to be reduced. In these situations, the curve simplification algorithm led to
distinct inaccuracies, while the results of the 1€ filter were satisfying.

Complex movements often cause the occlusion of certain keypoints, which can
result in false estimation of those and the need for cleanup. However, as frames
are analyzed individually, this will not interrupt continuous estimation. Planar
tracking complex movements and rotations is problematic and time consuming.

During testing, planar tracking was not a reasonable workflow, because stable results
would have needed roughly as much refinement and manual input, as rotoscoping
itself. Hence, the OpenPose workflow was compared to rotoscoping without a
fundament. In these cases, the OpenPose workflow outperformed adjustments
without foundation by 5%. One saves time, because the shapes do not have to be
translated as a whole, but has to spend time for the preparations with OpenPose.
Therefore, the difference is presumably bigger for longer frame ranges.
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3.4.5 Visibility

Shot 1 - original
contrast 5,3%

Shot 1 - low contrast 6,0%
Shot 2 - original

contrast 10,0%

Shot 2 - low contrast 12,5%
Shot 3 - original

contrast 4,1 %

Shot 3 - low contrast 4,9%

Table 3.2: Average difference in regard to keyed matte

One assumes intuitively that performance of pose estimation and the proposed
workflow improves with the visibility of the subject, more precisely with the contrast
between subject and background. To test this assumption, the contrast of shots
in front of a homogenous background was reduced to 25%. The regular- and
low-contrast version were put through pose estimation, and the difference between
a matte gained by keying and the automated roto mattes were compared. (See
table 3.2)

The results of this test clearly indicate that performance deteriorates with lower
contrast. The low-contrast mattes cover a greater area than the regular roto-shapes.
It can be concluded: With decreasing contrast, jittering increases and accuracy
decreases. This can be further observed on low-key plates, as pose estimation fails
for for very dark body parts.

3.4.6 Performance with changing Surroundings

The workflow was tested in regard to the movements of humans in the frame
(see chapters above), but also in regard to changing surroundings. This includes
different forms of camera movement and changing lighting on the subject.

Because of the fact that OpenPose analyzes each frame individually, temporal
changes from on frame to another, do not have any effect on pose estimation. As a
consequence, neither camera movements itself nor the changing lighting directly
influence this workflow. According observations could be made on the test-set. (See
figure 3.10)

However, camera movement can lead to change of perspective on the subject, causing
occlusions of body parts, which can deteriorate the output of pose estimation (See
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Figure 3.10: Consistent fundament for roto, despite significant lighting change

section 3.3.2). Changing lighting can cause parts of the image to become dark or
loose contrast, which influences the output as well (See section 3.3.5).

Consistent planar tracking with changing surroundings is often problematic. Mo-
mentary motion blur or changing lighting can result in pixel values that differ
significantly from the ones used as reference for tracking. E.g., for the handheld
shots I tested I was not able to get a consistent track at all. In this case one can
either do not use mocha as a fundament for rotoscoping at all, or spend significant
time manually adjusting planar tracks.

Principally, the datasets are the reference for pose estimation, while for planar
tracking only very specific features in a a small number of specific frames serve
as a reference. This shows one of the definite strengths of such a workflow: Pose
estimation works regardless of temporal changes and one does not manually need
to define image features for reference.

3.4.7 Cropped Input

Plates that require rotoscoping can be framed in all kind of ways, so rotoscoping
with pose estimation can be necessary for plates not showing the subject as a whole.

OpenPose still works given these inputs. (see c) figure 3.6 on page 26) To test the
corresponding performance, wide shots of the test-set were cropped and a cropped-
and original version was put through pose estimation. Keypoints visible in both
versions differed with an average of around 0.3%. Consequently, these keypoint
locations can be used similarly. Yet, one has to consider, that keypoints not in
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the frame are either predicted not at all, or faulty, which can affect body parts in
the frame. E.g., if a plate does not include the knee, but parts of the upper leg,
OpenPose cannot provide any fundament for masking the upper leg.

While it is possible to use OpenPose for single limbs, it might be too much in such
cases. The proposed workflow can provides basic movement for the whole body at
once, but for few shapes planar tracking can be even quicker.

3.4.8 Resume

First and foremost, temporal filtering is essential to work with the proposed
workflow. The filtered results are not a general solution, but work well in specific
situations.

As mocha delivers a more accurate fundament for rotoscoping, the proposed
workflow is not useful for shots that can be quickly and accurately tracked with
mocha.

The accurate analysis of the time spent for both workflows, would require long
time testing with multiple artists as it heavily depends on varying performance
of the artist. However, one can definitely conclude that pose estimation works for
shots, that cannot be consistently planar tracked. Moreover, one can quickly test if
the tool works well for individual shots and if not, one can still tackle a shot with
another technique.

So all in all, rotoscoping with pose estimation is less accurate, but it can work for
hard-to-track shots.
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3.4.9 Further Considerations

The development of the gizmo led to the following considerations to further progress
pose estimation based rotoscoping:

Implement new pose representation

OpenPose was recently updated with the ”BODY25” pose representation, which
includes keypoints at the end of the feet 10. Right now the corresponding roto-
shapes are only translated according to the OpenPose output, with this they could
be oriented as well. The representation also includes a central hip keypoint, which
can be additionally used for the transformation of the torso. Besides that, one
can use the available feature of body and hand estimation to automatically orient
shapes of the hand.

Automatically Trigger Pose Estimation

Since pose estimation itself does not need any user input, OpenPose could be trig-
gered automatically. E.g., one would specify in a VFX editoral tool, if rotoscoping
of humans is necessary for a specific shot. And as soon as the corresponding plate
is exported and ready for production, OpenPose will be triggered and export the
matching pose data as JSON-files. The JSON-Files only need a small amount of
storage (around 1KB per frame), and it would save time later in production, as an
artist just needs to import the data.

Improve User Interface

Secondly, an improved UI would presumably benefit usability and speed when
working with the tool. Right now, the connection of roto-shapes to the corresponding
limb is rather unintuitive and leaves room for improvement. This could be improved
by displaying a rig similar to the OpenPose-Output in the viewer. Ideally the
artist could then just select the parts of the rig and the corresponding shapes, and
connect both.

Hybrid Approach

To combine the benefits of pose estimation and planar tracking, a hybrid between
these two approaches may be worth testing. This could counter the lack of accuracy
10https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md

34



in pose estimation, while simplifying continuos tracking for challenging situations.

A basic concept could be, to calculate translation, rotation and scaling - similar
to the realized approach - for each shape in mocha, based upon pose data. As
soon as tracking terminates, or the shapes move away from the set reference the
artist could automatically realign the shapes with the human. Setting a keyframe,
without manually- but automatically moving the shape. Alternatively, the pose
data could dynamically define a search area for each tracking shape.

Adaptions of the Network Output

Networks that output a complete matte cannot serve as a basis for rotoscoping (see
section 2.3.1). However, if such a systems would represent the pixels belonging to
a specific limb as a bezier curve or b-spline, the output could be further adjusted.
The systems would need to be trained on estimating poses by infering control points
of a bezier curve or b-spline. This would enable animation on top of the output
matte. One could keep only certain keyframes and adjust the shapes accordingly.
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4 Using 3D Pose Estimation

In this chapter, a workflow to use the data of 3D pose estimation in a 3D-application
is described and evaluated. More precisely, how to automatically pose and animate
humanlike CG characters by transferring the HPE output onto a character’s rig.

The systems Human Mesh Recovery and Radical Motion are used for this workflow.
While the output of RADiCAL Motion is ready-to-use, HMR is not explicitly
designed for such a purpose, and the estimated poses need further processing.
However, the integration of such a system is compelling, as it offers flexibility and
can guide the integration of future systems.

4.1 Used Software and Tools

Figure 4.1: HIK

Autodesk Maya - the industry standard 3D application
for animation - is the fundament for this workflow. More
specifically, its rigging tools and python API, and the
HumanIK (HIK) system.

HumanIK is an animation middleware, for IK solving
and retargeting (see next section) full bodies. HIK pro-
vides tools for automatic and refined retargeting between
structurally different characters [Autodesk, 2018]. Thus,
it is commonly used for retargeting Mo-Cap data onto
characters.

To control and pose a character in maya, one has to
create a skeleton, which consists out of a chain of joints.
These joints form a kinematic tree (see section 2.1). The
joints are bound to the mesh, thus deforming it after
specific principles. To use HIK such a skeleton needs
to contain specific joints. The defined joints then need
to be characterized according to the HIK definition:
One has to define which joint represents the characters
corresponding limb or body part. [Autodesk, 2018]
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After definition, one can use the HIK features to retarget animation from one
character to another. Moreover, one can automatically create IK- and FK-controls
to adjust the skeleton. [Autodesk, 2018]

4.2 Mo-Cap Workflow

Using pose estimation to automatically pose and animate characters is principally
analogous to working with Mo-Cap data: Captured joint locations are transferred
onto a characters skeleton. Consequently, this workflow builds a fundament for
using pose estimation data.

After solving, which is the process of transforming optical data into a skeleton, by
calculating the root position and respective joint angles, a Mo-Cap solution will
output an animated skeleton as an FBX-File or similar. [Okun and Zwerman, 2010,
p. 345]

The animation of the Mo-Cap skeleton is applied onto another one in a step
called retargeting: The root positions and joint rotations are transferred onto the
corresponding joints. However, with anatomical divergencies, movements possible
with one skeleton can lead to unwanted behavior within another character. E.g,
mesh penetrations, or an unwanted change in the animations visual appearance.
To avoid issues during retargeting, the proportions of the captured actor should
match the final character closely. [Okun and Zwerman, 2010, p. 345] With HIK
one can retarget Mo-Cap data onto the desired character and bake the animation
onto its skeleton and control rig.

After retargeting, the character moves according to the Mo-Cap output, but
animation generally needs further keyframe adjustments to clean up faulty tracks
and to enhance or alter a performance. According to the Mo-Cap data, the skeleton
or control rig have keys for every frame. Working and altering this is tedious, so
animation layers are commonly used to work on top of Mo-Cap. For a defined
set of controls, additional animation layers can be defined. First off, such a layer
does not contain any keyframe. One can then set keyframes in these layers, which
either add to the base animation or completely replace it. The animation on top of
Mo-Cap needs to keep essential qualities, like realism and subtle details, gained by
Mo-Cap. [Yates, 2016]
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4.3 HMR Workflow

Human Mesh Recovery works on a single RGB image or image sequence and outputs
3D-poses. If its desirable to recreate the poses and motion of the captured human
digitally, it can be executed on any video, respectively image. This can be a plate
or a specific animation reference.

The workflow to use HMR, bases on the python script by R. Joosten [Joosten, 2018b],
which I further adjusted. With this, an HIK-skeleton will appropriately controlled
and animated, accordingly to the raw keypoint locations.

4.3.1 Pose Estimation and Import

(a) RGB input (b) HMR output (c) HIK skeleton (d) HIK character

Figure 4.2: Processing of HMR output

The trigger of pose estimation and the import of the pose data is similar to
the OpenPose Gizmo. HMR is triggered through a command line call. With
the adaptions of the demo by R. Joosten [Joosten, 2018a], pose estimation can
be automatically looped over a set of frames, with an export of the keypoint
3D-coordinates and joint rotations as a JSON file.

The exported JSON file can then be imported by the artist with a simple import
dialogue. Next, locators for every keypoint defined by HMR will be automatically
created, placed at the estimated coordinates, and animated over time.

4.3.2 Skeleton Binding

The HMR-workflow bases on retargeting Mo-Cap data with HIK: A HIK-skeleton is
created and animated according to positional information of the estimated skeleton.
This is principally achieved by constraining joints to locators, carrying the pose
data.
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Figure 4.3: Differences between the HMR output and a basic HIK skeleton

HMR works internally with the SMPL-skeleton, which differs from a standard
HIK-skeleton (See figure 4..3). Thus, the position of the missing joints is gained
relative to existing joints: The SMPL skeleton does not contain a center hip joint,
so its position Pcenter is defined by the position of the left- and right hip Pl, Pr.
More precisely, in the middle of both: Pcenter = 0.5Pl + 0.5Pr. Likewise, a spine
joint is necessary for HIK, but the SMPL skeleton does not contain one. its position
is defined by the position of the hip- and neck joint. Between the two, but closer
to the hip: .... All joints of the limbs, as well as the head- and neck joints, are
defined in both skeletons and can be positioned exactly at the predicted position in
3D space. Respectively, joints are point constrained to the corresponding locators
without offset. [Joosten, 2018b]

To ensure correct rotation of the missing joints, each of those is aim constrained
towards the hierarchical next joint. This way the local Y-Axis of those joints points
to their children. Otherwise retargeting, which bases on joint rotations, will not
work. The rotation axis should fit the structure of the kinematic chain. If not,
values between all rotation axes are interpolated with further animation, which
results in uneven rotations [Hewitt, 2013]. Since these joints are part of a kinematic
tree, and rotations are relative to each other, rotations of the left- and right hip
need to be recalculated as well. [Joosten, 2018b]

To adopt the estimated orientation of the head, the neck-joint is aim constrained
towards the head-joint, with the nose as an up-object. Because of that, the Y-Axis
of the neck joint will always point towards the head, while the Z-Axis is turned
towards the nose. The head will turns in the direction of the estimated nose.

Finally animation on every joint is baked and the locators and constraints are
deleted.
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Limited by the output of HMR, this skeleton is a very basic humanoid skeleton,
but uses all the information estimated. With HIK it can be retargeted onto more
complex skeletons.

4.3.3 Position in Space

To ensure consistent and appropriate placement of the character in world space,
poses for every frame are positioned at the origin. More precisely, the root, defined
by estimates of the left- and right hip, is placed at the origin. To have the character
standing on the ground plane, the root is translated along the Y-Axis by the
distance between hip and ankle.

With moving joints, animated by continuously estimated poses, it is desirable that
the character itself does also move in space. HMR implicitly predicts a camera
position, to minimize the reprojection error between the 3D- and the 2D keypoints
[Kanazawa et al., 2017]. It was tested if the translation of the predicted camera
can be used to provide sufficient movements in space. If an analyzed plate is
shot with a locked-off camera, the position in space relative to the camera, can
be acquired. However, HMR uses the simplified weak-perspective camera model
[Kanazawa et al., 2017], and the predicted depth is too inaccurate for that purpose.
Even for a simple forward-motion, this approach caused very inconsistent and thus
unacceptable motion.

As a result, only a character’s pose, but not the position in space, can be acquired
with this system. E.g., a character performs a walking motion, without actually
moving forward. The position in space can be manually animated with a handle
transforming the whole skeleton.

4.3.4 Temporal Filtering

The two methods described in section 3.2.5 (1€-Filter and curve simplification)
were tested for the use with HMR as well. The curve simplification algorithm did
produce unsatisfying results. Even a low error threshold resulted in impossible
human poses and mesh penetrations. Whereas the 1€ filter did produce better
results.

Since translation and rotation for each joint of a skeleton is relative to the corre-
sponding parent, filtering is applied onto the raw pose estimation locations. This
way, the noisy signal of single keypoints can be separately filtered.
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4.4 RADiCAL Motion - Workflow

Working with the output of RADiCAL is straightforward: The output skeleton is
downloaded as an FBX-file and directly imported into Maya.

The skeleton contains all joints needed for a HIK character and the joint names
match the HIK character definition. Thus, it can be manually or automatically
characterized as an HIK skeleton. Before characterization the skeleton does need
to be in a T-Pose with joint rotations at zeroed out. From then on, the animation
can be retargeted onto any other HIK character and be further processed with
standard workflows (see section 4.2).
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4.5 Evaluation

The use of 3D pose estimation, was tested analogous to the use of 2D pose estimation:
the capture and representation of poses and different types of movement in multiple
surroundings. For this, both of the previously described workflows were executed.

3D pose estimation was evaluated on a test-set, which consists of monocular
videos with an actor performing fast and complex motions (Fighting, dancing and
running) and slow linear movements (walking and gesturing while standing still).
These movements were captured in front of a homogenous white background and
inhomogeneous land- and cityscape. Shots were principally captured as a long shot,
with 25 fps and a 180° shutter. To test higher temporal resolution, movements
were additionally recorded with 50 and 100 fps.

A benchmark for the same movements was acquired with a Microsoft Kinect, as it
is a currently common Mo-Cap technique with a similarly small setup and without
markers.

4.5.1 General Performance

Figure 4.4: Animation curves of HMR and Kinect

Most of the time, individual poses estimated by both systems and the corresponding
input frames are visually coherent. The test-set consisted of 2055 frames, and only
around 3% of the poses estimated by HMR had one or more clearly mismatched
limbs. It has to be taken into account that visual coherence and comparison to
ground truth values can diverge: Kanazawa et al. describe that even poses with a
high error are still visually reasonable [Kanazawa et al., 2017, p.7].

In regard to coherently predicted poses, one should note that a discriminator network
controls all poses predicted by HMR, which ensures probable and biomechanically
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correct poses. Contrary to that, Mo-Cap with a Kinect can produce unacceptable
poses.

For character animation not only coherent prediction of individual frames is critical,
but eventually the visual quality of continuous movements. The output of HMR
shows similar problems as 2D pose estimation: Due to poses being individually
estimated per frame, slight deviations between frames result in temporal jitter.
This can be controlled to some extent by the 1€ filter but remains a problem when
the actor is standing still or moving. One can clearly observe the jitter, when
comparing the animation curves of both systems (See figure 4.4 on the previous
page).

Moreover, on account of the high noise in the signal, subtle movements are not
captured well. The estimated movements of HMR and RADiCAL clearly lack
details, compared to the output of the Kinect. This can be especially observed
for slow movements. Respectively, fast and distinct movements work better. On
account of the high noise, higher frame rates do not produce remarkable differences.
As Mo-Cap is generally used to realize life-like performances, which feed off subtle
details, the lack of such details seriously reduces quality [Okun and Zwerman, 2010,
p. 368].

When comparing the output of RADiCAL to HMR, the movements lack even more
detail. It did produce more erroneous frames and the output of RADiCAL seems
very mushy in comparison to HMR. The mushy quality of movements is most likely
due to strong temporal filtering applied to the results, which cannot be manually
adjusted.

Besides subtle details, pose estimation does not work well for movements in space.
While poses estimated with HMR do not move in space at all, the output of
RADiCAL suffers foot sliding and lacks accurate placement in space, compared to
Mo-Cap with a Kinect.

4.5.2 Failure Cases

The main failure cases described in section 3.3.2 can be observed for 3D pose
estimation as well: First off, unusual poses that are underrepresented in the dataset
are likely to completely fail. And secondly, occluded body parts are often estimated
at a similar position as the respective counterpart.

Besides problems analog to rotoscoping with OpenPose, both systems are not
capable of estimating multiple persons at the same time. A workaround would be
to separate both persons in the frame and run pose estimation independently on
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Frames Erroneous Frames
HMR/inhomogenous

BG 1262 37 3.6%

HMR/homogenous
BG 793 19 2.1%

RADiCAL/inhomogenous
BG 1329 71 5.3%

RADiCAL/homogenous
BG 585 30 5.1%

HMR Total 2055 58 2.8%
RADiCAL Total 1914 101 5.3%

Table 4.1: Number of significant mispredictions with 3D pose estimation

both. Yet, this will not work for close subjects, and neither for the interaction
between two persons.

Another problem was observed, when using HMR for wide shots. The system
expects input images to be tightly cropped around the subject. Nevertheless,
HMR can compute the correct bounding box, if given the OpenPose output for
the input frames, and thus can run on images that are not cropped accordingly
[Kanazawa et al., 2017]. However, if one of the main keypoints is mismatched, HMR
will compute an oversized bounding box, and run on irrelevant pixels. During testing
erroneous OpenPose output led to errors in 3D pose estimation. Consequently, one
has to preprocess and crop frames accordingly, to reduce possible sources of error.

4.5.3 Rotations and Perspective

Compared to Mo-Cap with a single Kinect, pose estimation captures rotations
remarkably well. The Kinect requires the subject to face the sensor, so an actor
turning around its own axis will result in erroneous poses. Pose estimation is not
principally limited to the front perspective of humans because datasets contain
humans from all kind of perspectives, thus capturing rotations in higher quality.
(See figure 4.5 on the following page)

However, the visual quality of pose estimation declines, if the actor’s back faces the
camera: The movements seem less distinct. This is most likely due to the training
datasets containing less images of people with their back towards the camera.
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Figure 4.5: Raw Mo-Cap data just after rotation of the actor. Corresponding
systems from left to right: RADiCAL, HMR, Kinect

4.5.4 Use on a Plate

While one cannot use Mo-Cap for an already shot plate, pose estimation enables this.
Consequently, 3D pose estimation was evaluated regarding qualities, that matter
for the use on plates. This covers the performance regarding camera movements,
surroundings and subjects not framed as a whole.

First off, the used systems analyze frames individually, similar to OpenPose. Thus,
temporal lighting changes will neither influence results.

Movement in space through projection assumes a locked-off camera. Due to
this principle, any camera movement directly influences movement in space for
RADiCAL. So one does need to constrain the root to a specific point. Moreover,
RADiCAL will fail to estimate a pose if the actor is not fully framed.

Camera movement is not relevant for the HMR-workflow, because subjects do
not move in space and frame are estimated individually. HMR always outputs a
complete skeleton, and it still produces reasonable output, even if the subject is not
fully framed. In this case, the body parts in the frame are visually coherent, while
anything outside the frame is represented by a probable pose, defined through the
discriminator network. Body parts outside the frame do not match the performance.

Both systems produced reasonable output in front of homogenous and inhomoge-
neous backgrounds. No differences could be observed regarding the general visual
quality, but the number of erroneous poses increased in front of a inhomogeneous
background. This could also be a result of the restricted movements in front of a
homogenous background.
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4.5.5 Resume

First off, pose estimation cannot be used like any state-of-the-art Mo-Cap sys-
tem, because the output is missing subtle details and the results are not reliably
positioned in space.

Nevertheless, 3D pose estimation offers other possibilities. Principally as an
animation reference, previz and preview tool. When working with video reference,
poses and motion can be automatically previewed on the respective character. This
can be especially beneficial and save time, when working with a variety of iterations.
A lot of animation references can be easily and automatically previewed on the
respective character. Accordingly, one can capture a variety of explicit animation
references with a single camera. Ideally in front of a homogenous background and
while facing the camera.

In addition, pose estimation can build the basis for Pose-to-Pose11 animation. One
can only pick distinctive poses of the output and discard the remaining frames.
While the animation lacks details, key poses of HMR are biomechanically correct,
and coherent to the capture. It would not be necessary to pose a character from
scratch. This could be based upon specifically captured references, but also be used
on a plate. Ergo pose estimation can be the fundament for rotomation, because
poses can be predicted for shots with a moving camera, and HMR will always
output a complete skeleton, despite parts of the body not being in the frame.

When using pose estimation, HMR is the better choice, because temporal filtering
can be controlled, and it does not come with the limitations and costs of the
cloud-based workflow. Furthermore, movements in space of both systems need
manual adjustments: One has to completely create movements in space for HMR,
but the movements of RADiCAL need distinct cleanup.

11The process of generating key poses first, then refining inbetweens
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4.5.6 Further Considerations

Testing with 3D pose estimation led to the following additional ideas.

Orientation of Hands and Feet:

Similarly to rotoscoping with OpenPose, the HMR workflow does not orient the
hands and feet. While OpenPose currently features a pose representation that
enables this, the HMR output is missing the appropriate keypoints. Since hand
and feet can be essential to the impression of a pose, bringing in the orientation of
these is desirable.

One has to consider, that the estimated keypoints depend on the labels of the
training datasets. Right now neither COCO, nor MPII feature the required
keypoints. A network cannot be trained on missing data, so the orientation of hand
and feet requires extended datasets.

Use of HPE for Crowds:

In the near future, optical or mechanical Mo-Cap solutions will most likely remain
the standard for big budget productions and lead characters. However, HPE could
be used for simple animation of inconspicuous characters in backgrounds and
crowds.

With pose estimation, one can create a large animation library for crowds. This
would only need the appropriate video input, gained from specific shoots or from
general resources. A greater variety of animations can be obtained more quickly
than with special Mo-Cap sessions or keyframe-animation.

Hybrid Approach:

Mo-Cap with a Kinect can produce unreasonable poses, contrary to the HMR-
output, which is controlled by a discriminator network.

So one can control the depth based output-skeleton of the Kinect with a similar
discriminator, to ensure probable anatomy. Moreover, estimated poses can work as
a guidance for the depth-based skeleton.
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5 Conclusion and Prospects

5.1 Conclusion

In this thesis, workflows for the use of pose estimation in VFX applications were
described and evaluated. More precisely, 2D pose estimation as a rotoscoping
fundament and 3D pose estimation to pose and animate CG characters.

After gaining a fundamental understanding of machine learning, the knowledge
was used to utilize and evaluate HPE practically.

2D pose estimation was integrated with a nuke gizmo: The desired plate is analyzed
with OpenPose and roto-shapes are positioned along anatomical keypoints. The
fundamental movements of the human in the frame, acquired by OpenPose, are
transferred onto the roto-shapes. Temporal jittering is an issue with this workflow
but can be controlled to some extent by filtering. This workflow lacks accurate
capture of detail but outperforms planar tracking for hard-to-track shots in terms
of speed.

CG characters can be posed and animated with the described workflows for 3D pose
estimation. The primary challenge is the transfer between estimated keypoints and
a skeleton that suits animation. Problems with temporal consistency and accuracy
are similar to 2D pose estimation. Hence, 3D pose estimation is not a complete
Mo-Cap alternative but offers fast workflows for previewing and a fundament for
pose-to-pose animation.

The findings show first and foremost, that human pose estimation is a promising
tool for acquiring poses and movements with simple setups and in situations where
it was not possible before. However, it is not on par with state-of-the-art techniques
concerning accuracy and temporal consistency. Further developments, especially
regarding smooth, but precise human movements, would dramatically increase the
value of such workflows.

All in all, HPE is a specific tool, which can benefit some productions, but is
currently not a universal solution. The proposed workflows shall give suggestions
for the use and encourage further developments.
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5.2 Prospects and possibilities

(a) Character Animator facial anima-
tion

(b) Embodied VR experience

Figure 5.1: Prospects and possibilities1213

The possibility to acquire human poses with a single RGB camera offers a wide
range of further opportunities for visual effects and media technology, which were
not covered in this work. An overview about these opportunities will be given in
the following chapter.

First off, analogous to rotoscoping with pose estimation, these systems could be
used to animate 2D characters. Adobe Character Animator offers tools for the
animation of puppets: A 2D-character only visible from one perspective, is divided
into limbs and body parts, which can be moved by a rig. Moreover, Character
Animator provides the possibility to convert videos into facial animation, using
facial recognition. [Nece, 2017] (See a) figure 5.1) Pose estimation would offer an
equivalent functionality for full bodies, by driving the rig with keypoint coordinates.
Obviously the current main problems - temporal jitter and lack of accuracy - would
affect the output. Nevertheless this could allow quick blocking, preview and usage
as a fundament.

Besides standard postproduction workflows, real-time 3D pose estimation [Mehta et al., 2017]
offers possibilities for interactive applications and virtual production. With a direct
link of pose estimation to a game engine, one would only need a simple locked-off
witness camera to preview animated digital characters.

This can be suitable for interactive installations reacting to human interaction.
Spectators would not need extra equipment to be captured and are not limited to a
defined Mo-Cap Volume. Only the field of view and exposure of the witness camera
12source: https://www.youtube.com/watch?v=z1nZGyLYydc - access: 2018-08-31
13source: http://cg.web.th-koeln.de/a-simplified-inverse-kinematic-approach-for-embodied-vr-

applications/ - access: 2018-08-31
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does need to be considered. VR or AR experiences with multiple users can similarly
take advantage of that. Accordingly, poses of every user can be captured by a
witness camera, transferred onto characters and then be displayed in a users view.
To achieve that, poses would need to be accurately positioned in space, relative to
the camera defining the view of a user. Likewise, embodied VR experiences can be
realized without further equipment than the virtual reality glasses.

Furthermore, the animation gained with a witness camera in real-time could be
used for virtual production and live preview on set. In combination with real-time
camera tracking, an animated character can be previewed, while capturing a shot.
This would benefit virtual production outside of a studio, and if wearing a Mo-Cap
suit is not feasible.

All in all, the primary benefits of the respective opportunities lie in the simple
setup, which can be used in any uncontrolled environment.
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Nomenclature

API Application Programming Interface (short API) allows third parties
to add functions to an existing system. The API defines the standard
structure and commands.

JSON JavaScript Object Notation (short JSON) is a standard file format
for the exchange between different applications. It consists out of
pairs of attributes and values, respectively arrays. Its format makes it
compact and readable by humans.

Rotomation Rotomation refers to the animation of a CG character, to recreate the
motion of a captured subject from a plate.
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Abbreviations

CG Computer Graphics

CNN Convolutional Neural Network

Mo-Cap Motion Capture

HPE Human Pose Estimation

Previz Previsualization

Roto Rotoscoping

VFX Visual Effects
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