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Abstract 

Due to the rise of visual effects in film, TV, commercials, games and VR over the last decade 

and increased competition within the VFX industry it is integral for any major VFX company 

to always lead through innovations that streamline their production.  

However, the last big change to intermediate file types came with deep image technology, 

invented 18 years ago. To determine whether Evotis, a new rendering-sample based non-

uniform image technology, has the potential to be the next improvement to the intermediate 

workflow several performance tests were conducted, benefits and disadvantages discussed, 

and potential improvements proposed. 

Kurzfassung 

Wegen der durch Filme, Fernsehproduktionen, Werbung, Spiele und VR stetig gestiegenen 

Nachfrage nach visuellen Effekten und der dadurch gestiegenen Konkurrenz ist es für große 

VFX Firmen von grundlegender Bedeutung stets durch das Nutzen der neuesten 

Innovationen ihre Arbeitsweise zu verbessern. 

Jedoch ist die letzte bedeutende Änderung der als „Intermediate“ genutzten Bildtypen, die 

Erfindung von deep-Bilder, vor 18 Jahren gewesen. Um zu klären ob Evotis, ein rendering-

sample basiertes, und nicht gerastertes Bildformat, das Potenzial hat die nächste Stufe in der 

Entwicklung des „Intermediate Workflows“ zu sein wurden verschiedene Performance Tests 

durchgeführt, die Vor- und Nachteile genau beleuchtet und mögliche Verbesserungen 

vorgeschlagen. 
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Glossary of Terms 

AOV - Arbitrary Output Variable 

deep  - deep-data image, an image format that stores the rgba and depth information  

of every surface or volume point contributing to the value of a pixel within a  

rasterized 2D pixel grid, possibly hundreds of samples per pixel  

flat - rasterized pixel-based 2D image with only rgba information per pixel 

repo - repositioning of an image 

rgba  - color channels of an image (red, green, blue, alpha), can be referred to as a  

single channel or a combination, i.e r,g,b,a or rgb 

VFX - Visual Effects 

NaN - “Not A Number”, damaged non-displayable pixel value 
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1 Target Audience 

 

This thesis is targeted towards visual effects professionals that possess a working 

understanding of visual effects work in general, the VFX pipeline, common workflows, 

computer graphics knowledge and the techniques used in the industry. Therefore basic 

aspects will not always be explained in detail and industry-specific vocabulary will be 

used, mostly, without separate explanations. A bit of basic vocabulary has been 

explained in the glossary, for further reference “Visual Effects in a Digital World: A 

Comprehensive Glossary of over 7,000 Visual Effects Terms” (Goulekas, 2001) can be 

used.  

This work is meant to be an introduction into Evotis and its non-uniform rendering-

sample based approach, an evaluation of its production-readiness and its capabilities in 

general. It can therefore be considered an early evaluative guide for Evotis.   
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2 Introduction  

 

Due to the ever-increasing need for high-end VFX in movies, commercials and TV, 

tight deadlines and even tighter budgets, all VFX companies constantly optimize their 

workflows towards faster turnarounds, while keeping costs low and quality high. One 

key aspect to stay competitive for any VFX house is the ability to quickly react to 

changes, possibly last-minute, requested by either a client or a supervisor. 

D to the complexity of modern VFX work, and its pipeline, a change, especially if it 

needs to be addressed in the 3D department, can take a long time and therefore prolong 

a facilities turnaround, which in turn depletes the possible margin. The problem of turn-

around times and pipeline rigidity will be addressed in chapter 3.2 Workflow. 

To better cope with change-requests more responsibility and variability is constantly 

being moved further down the pipeline, mostly from the 3D department into the 

compositing department. (Okun, et al., 2015) This started with rendering CG elements 

separately for them to be combined in compositing, only needing to re-render smaller 

portions of the image if mistakes were found or changes wanted. (Brinkmann, 1999) 

The next step was to split the image into different render passes for different surface and 

light characteristics, like specular, refraction, diffuse, self-illumination and many more, 

which could be recombined in compositing using simple mathematical operations, but 

also altered in a more versatile way, greatly speeding up changes, at least to a certain 

point of variation. (Wright, 2010) 

Another improvement in flexibility was achieved with the addition of AOVs (arbitrary 

output variables), sometimes also called tech passes, which enabled the compositor to 
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change more aspects of the 3D rendering within his software package by manipulating 

only certain characteristics of any given rendering. (Brinkmann, 2008) 

The latest big technical advancement was the introduction of deep images, a new image 

type that was capable of storing multiple depth samples per pixel (Lokovic, et al., 2000), 

and thereby allowing more precise depth-related effects and many other features, which 

will be discussed in chapter 3.1.2 Deep Images. 

 

The question that leading VFX companies have to ask themselves now to stay ahead, as 

deep is becoming a standard within the industry and even in mid-sized facilities, is: what 

will be the next big step? 

One possible successor technology to deep could be the new Evotis system developed by 

GoGhost LLC in San Diego, a rendering-sample based non-uniform image format that 

aims at shifting even more control and flexibility towards the compositing department. 

The concept behind this system, its advantages and disadvantages will be covered in 

chapter 4 Evotis. (GoGhost, 2018) 

To determine whether Evotis is a possible replacement for deep-, or even flat images, 

multiple performance and file tests, highlighting different key aspects in 3D rendering as 

well as in compositing, will be executed and evaluated in chapter 5 Performance 

Evaluation. 

A look-ahead for needed changes and suggested further developments of Evotis, and a 

Conclusion will follow in chapter 6 Conclusion, with chapter 7 Further Work suggesting 

further research possibilities in the continued testing and implementing of Evotis. 
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3 State of the Art 

 

In this chapter the two currently used image types within the VFX industry, flats and 

deeps, as well as a standardized and simplified workflow are shown, while each image 

types history, advantages and disadvantages are explained. Furthermore the reasons for 

rigid workflows are described. 

Image type refers to the functionality and underlying architecture of an image, rather 

than its file format, for example: flat is the type, rasterized pixel image is the underlying 

technology, while .exr1, .dpx2, .jpeg3 or .png4 are some of the formats.  Another common 

image type is the vector graphic, using non-rasterized vector information with .eps5 or 

.svg6 being two of the many available formats. 

 

3.1 Flat Images 

 

Flats are “a rectangular array of (…) values” (Rosenfeld, 1969). While they have 

progressed from simple 2 bit integer arrays, to 6, then 8 and now 32bit float arrays, flats 

on today’s VFX workflow are still true to the early definition of a digital image. Flats are 

used in every VFX facility for most of the intermediate work, usually as .exr files. They 

are the backbone of any workflow. (Brinkmann, 2008) 

                                                      
1 OpenEXR http://www.openexr.com/ 
2 Digital Picture Exchange ST 268:2003 - https://www.smpte.org/ 
3 Joint Photographic Expert Group  ISO/IEC 10918-1 - https://jpeg.org/ 
4 Portable Network Graphics ISO/IEC 15948:2003 - http://www.libpng.org/pub/png/ 
5 Encapsulated PostScript 
6 Scalable Vector Graphics W3C SVG - https://www.w3.org/Graphics/SVG/ 
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Flats have been optimized and developed since the first 

digital image from 1957, shown in Fig. 3-1, as this was 

a flat, a simple pixel-raster image. (NIST, 2018) 

An important step forward in the VFX flat workflow 

for 3D renderings was the addition of a depth channel, 

usually called Z, Z-depth or depth, enabling the 

compositor to manipulate any depth-related effects, 

like focus, haze or heat distortions much more 

efficiently and precisely. The Z-depth, originally called 

Z-Buffer, first invented to determine visibility of 

objects in 3D renderings based on the position in depth in 1974 by Wolfgang Straßer 

(Straßer, 1974) and independently and shortly afterwards by Edwin Catmull (Catmull, 

1974), who coined the name Z-Buffer,  also marked the beginning of AOVs as we know 

them today. Though first only an internal calculation step for determining object 

intersections and visibility, it later became one of the first widely used render layer that 

wasn’t a part of the visible image, and therefore only a tool for the compositor to use, 

marking one of the first important steps in handing down responsibility towards 

compositing.  

The next important improvement to digital images, towards today’s digital compositing, 

was the invention of the alpha channel in 1979 by Edwin Catmull and Alva Ray Smith 

(Smith, 1995). Due to the addition of an alpha channel a set of algorithms, defining 

blending operations, were introduced. (Wallace, 1981) (Porter, et al., 1984).  

 

The last big step, conceptually, was the introduction of render passes, which, unlike 

AOVs, are part of the visible image. These render passes split the image into different 

object and light characteristics, for example: diffuse, reflection, refraction, specular and 

Fig. 3-1 - worlds first digital image 
(NIST, 2018) 



State of the Art   6 
 

6 
 

self-illumination. The result, if these passes are recombined properly, is identical to the 

regularly rendered image, but due to the separated characteristics it was now possible to 

alter and manipulated the images in a more refined and controlled way, greatly adding 

to the flexibility in compositing. (Brinkmann, 2008) 

From this point forward more AOVs and render passes were added, multiple images 

stored in one file, but no conceptual changes were introduced to flat images anymore. 

 

3.2 Deep Images 

 

Even though the base functionality of deep images, multiple depth-related samples per 

pixel, has been introduced in 2000 (Lokovic, et al., 2000), it still took until 2008 to be 

first used for feature film compositing at Weta1, and again till 2012 to spread among 

most of the global players to be used on selected shots (Seymour, 2014). While most 

major companies nowadays included deep into their standard pipeline, many mid-sized 

and small outlets have not changed to include deep in any way, which is due to the big 

file size and intensive processing needed for a deep workflow to function in a beneficiary 

and cost-effective way. (Seymour, 2014) 

The main practical advantage of deep images and deep compositing lies in holdout 

generation, especially for atmospheric renderings, as this used to be a time-consuming 

and difficult task, often requiring split-renderings of atmospherics in front and behind 

the subject or especially rendered holdouts demanding a dual-incrimination. With deep, 

and its depth-based merge capabilities, this now is a one-click task, allowing separate 

incrimination-renderings of subject and atmospherics.  

                                                      
1 Weta Digital Ltd., Wellington, NZ - https://www.wetafx.co.nz/ 
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Deep also allows the interactive creation of ID-mattes, as object related information can 

be saved in the depth-samples with only minor changes to the rendering set-up, 

enabling the compositor to create object based mattes. 

One of the most widely known and innovative uses of deep compositing is a technique 

called “Camera Space Volumetric Shadows”, 

usually called “Shadowsling” for ease of use, 

developed at Weta in 2012, which uses deep 

PantaRay (Pantaleoni, et al., 2010) shadows 

and deep volume renderings to allow 

interactively generated volumetric shadows 

and god rays in compositing, rather than 

having to render them in a locked position 

from a 3D software package. (Hanika, et al., 

2012) This enabled a much speedier 

turnaround, as any changes in the look of 

the shadows could be achieved in 

compositing, changes in the horses 

animation did not demand a re-rendering of 

the particle simulation, and, as seen in Fig. 3-2 – Shadowsling comparison, even a change 

in in the direction of the light could easily be addressed in compositing, allowing for 

highly increased versatility. As shown in the three sub-images, the look of the dust 

rendering can be altered to accommodate any light source position possible, while 

correctly adapting and calculating the shadows, bounce lights, density changes and god 

rays. 

Fig. 3-2 - Shadowsling comparison © Twentieth 
Century Fox Film Cooperation and Weta Digital 
Ltd. All Rights reserved 
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The disadvantages of deep images are the processing-intensive overhead and the big file 

size, demanding longer render and processing times, compared to flats, thus, if not used 

in a beneficial and time-saving way, slowing down the workflow.  

The performance differences between flats and deeps will be further assessed in chapter 

5 Performance Evaluation. 

 

 

3.3 Workflow 

 

The workflow, also called pipeline, will be briefly discussed to illustrate the problem of 

changes needing to be made in the 3D department compared to changes that can be 

made in compositing, the possible time being saved and the therefore resulting 

improved turn-around time. To accommodate all the processes that a VFX facility must 

cope with, the hundreds of shots and thousands of tasks, and still function in an 

organized way, the pipeline needs to be at the heart of any company, as it determines 

every procedure of every department, and therefore is one of the main aspects of the 

turnaround-times, and possible profit margin of the facility (Wright, et al., 2016). Due 

to its integral part the pipeline also must be dependable, but to be fully dependable at 

any given time it also can never be bypassed in any way, meaning every step in a process 

needs to be taken, as every step that follows will depend on it. To illustrate this rigidity 

the flowchart in Fig. 3-3 shows a highly simplified workflow of all major steps necessary 

to accommodate a change that needs to be addressed in the 3D department. This graph 

was kept as short as possible, thereby neglecting a lot of intermediate steps necessary. 

The  “change in 3D”-step was also kept as one step, as any change-request that goes 

beyond the shading, lighting and rendering department, e.g. modeling or animation 

changes, will most likely be out of scope of possibly being changeable in compositing 
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anyways, with or without Evotis. In most change-

request cases, smaller fixes, not radically changed 

scenes, that need to be addressed in 3D and therefore 

pass through the whole workflow shown, the longest 

active-work-time (the time an artist or a computer, will 

need to work on a single step) usually is 3D rendering. 

Several hours per frame are the norm for high quality 

renderings, even on the most powerful render slaves. 

Added to this the time a 3D artist needs to incorporate 

the update, the internal 3D review process, the VFX-

Supervisor review and the ingestion steps necessary, 

then this can easily add-up to multiple days. Therefore, 

as shown before, it is always the goal to bring as much 

versatility and freedom as far down the pipeline as 

possible. The time saved by not having to go back all 

the way to 3D, even if only applicable, hypothetically, 

for 10% of the shots, will make a difference for any 

facility. 

 

On a big show it is common for a major company to 

have multiple hundreds of shots, for example around 

7001, assuming only half of them need 3D work, which 

in today’s films would be quite a low figure. Sticking 

with the hypothetical 10% and assuming an average of 

                                                      
1 Scanlines number of shots on Justice League https://www.scanlinevfx.com/about 

Fig. 3-3 - simplified workflow 
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1.5 days per change request, as discussed earlier, the saved time will still be substantial: 

 

�
700 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑠𝑠

2
∗ 10%� ∗ 1.5𝑑𝑑 ≈ 53 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠  

 

Even with these low assumptions a saving of 53 days is a figure no VFX company can 

ignore.  
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4 Evotis 

 

The core concept of Evotis is a render-sample based intermediate image format, rather 

than a pixel-based one, thus creating new possibilities in the 3D rendering approach and 

in compositing.  

In a pixel-based workflow any Monte-Carlo 3D renderer first generates an adequate 

number of randomly scattered ray samples to cover every needed pixel sufficiently and 

then combines those ray samples to calculate the pixels value. (Cook, et al., 1984)  

The approach of Evotis is to keep those non-uniform rendering samples rather than the 

combined and rasterized pixel value and thereby preserving the information more 

precisely and avoiding any filtering algorithms that would deteriorate the images 

technical accuracy until later in the pipeline.  

Within this chapter Evotis’ characteristics, implementation, advantages and 

disadvantages are discussed in more detail, all based on private beta v1.61 developed by 

GoGhost. (GoGhost, 2018) 

 

 

4.1 Sample Optimization 

 

To avoid saving unnecessary samples, two combinable options are available within 

Evotis: adaptive sampling and resampling.  
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Adaptive sampling, also used by some 3D renderers for increased speed due to 

adaptively minimized ray-sample counts, v-ray1 for example (Chaosgroup, 2018), uses 

object- and texture-based approximations to determine edges or high-frequency areas 

within the frame and then uses the resulting map to adaptively adjust the sample count 

as needed. Thereby reducing the samples saved for plain areas or a black background to 

the minimum set by the user, and as a result reducing the final file size. 

Resampling, on the other hand, allows the user to set the maximum sample count per 

pixel. Pixels are still used by Evotis as a guideline for the user, and also as a necessity to 

communicate the desired image proportions, the number of total samples and their 

spread, to the 3D renderer. 

 

If both options are selected the 

user can determine the minimum 

and maximum sample-count per 

pixel, as seen in Fig. 4-1. 

 

These values are squared for the output, meaning an entered minimum value of 2 will 

result in a minimum of 4 samples per pixel in the final rendering. These settings will 

later be referenced in chapter 5 as a number pair, e.g. 2-4 for a minimum value of 2 and 

a maximum value of 4. By setting either of these limits the spatial positioning of the 

samples within the pixel is changed for every affected pixel to a uniform pattern rather 

than the non-uniform randomly spread samples generated in the renderer. 

The resulting sample behavior is shown in Fig. 4-2, a zoomed-in 4x2 pixel segment of a 

rendering of two planes with solid colors applied. 

                                                      
1 V-Ray Homepage: https://www.chaosgroup.com/ 

Fig. 4-1 - sample optimization options within Evotis interface 
in Maya 
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The six labeled sub-images show: 

 

(a) the resulting pixel image. The hard edge between the two objects gets anti-aliased, 

resulting in the color bleeding into the white, which in turn means that the two 

object will not be cleanly separable in compositing without additional edge work, 

which will be further addresses in chapter 4.3 Advantages of Evotis. 

(b) the rendered samples without any reduction method applied, resulting in, on 

average, 75 samples per pixel. 

(c) the adaptive method with a minimum setting of 2, resulting in a reduced sample 

count in all pixels not intersecting with the objects edges, but leaving the edge-area 

sample-counts untouched.  

(d) the resample setting with a maximum setting of 3. 

(e) both settings, adaptive and resample combined (2-3) resulting in reduced sample-

counts for both, plain areas and edges, 4 and 9 samples respectively in this case . 

(f)  the results of the adaptive setting rendered with v-ray, which, as mentioned before, 

already uses its own adaptive method for ray-sample generation, resulting in just a 

single sample per pixel in the flat areas of the two planes. 

Fig. 4-2 - sample optimization comparison 
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The shown sample optimization options are a necessity to keep file sizes down to still be 

able to work with the renderings, but at the same time preserve as much detail as 

possible, or needed, to take advantage of the features offered by Evotis. The values used 

are not a representation of any kind, but were chosen for visual clarities sake. The 

definition of best-practice values will be based on the specific scene, company and use-

case, just as it is done with the render settings, these settings will need a constant fine-

tuning to balance quality with file size and rendering time. 

 

4.2 Capabilities and Implementation 

 

By preserving the samples, rather than a combined pixel, Evotis postpones the sample 

combination and area reconstruction into the compositing software, which demands a 

higher processing effort. This approach is similar to deep images, as they also have to be 

converted to a flat image within compositing to be handled natively. One problem using 

this workflow of in-comp conversion is the strongly reduced working-speed of the 

compositing software, usually leading to pre-renderings, as is common practice, when 

working with deep files. Another time-affecting aspect to be considered is that Evotis, 

due to being based on samples rather than pixels, needs to fill-in the areas in between 

the saved samples. For this Voronoi meshing is used (GoGhost, 2018), another 

processing intensive step, thereby further reducing the performance. Due to applying 

the area-reconstruction step during compositing it can also happen, especially when 

using Evotis’ rescaling capabilities, that an insufficient number of samples remain 

within a given area to properly reconstruct it, leading to flickering.  
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Fig. 4-3 - evoID interface 

The 3D part of Evotis is developed as a plug-in, currently only available for Maya1, 

which generates a separate .evo file next to the regular flat rendering. Its implementation 

is based on AOVs or render-elements, depending on the renderer, therefore not 

demanding any changes to the scene or setup to be activated or deactivated.  

 

For compositing Evotis is, so far, available as a Nuke2 plug-in with several gizmos, all 

designed for basic tasks, as Nuke is unable to handle Evotis files by default. The three 

important ones, for a basic workflow, are: evoReader, evoID and evoReformat.  

 

The evoReader is used to read evo files into Nuke. Its options are still basic in the tested 

beta version, as there are no color workflow or metadata options implemented yet.  

 

EvoID enables the user to generate 

different “Sets” containing objects 

of the Maya scene. Evotis uses the 

scene-specific Maya hierarchy and 

naming convention to 

automatically generate IDs for any 

object, which can also be grouped 

into multiple different “Sets” 

within the evoID node, to be used 

later for matting or object isolation. The Maya scene hierarchy visible in Fig. 4-3 is a 

basic example of only three objects within a scene. In this example three custom sets 

                                                      
1 Maya Homepage: https://www.autodesk.de/products/maya/overview 
2 Nuke Homepage: https://www.foundry.com/products/nuke 
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have been created and the “Default” set was modified to only include one torus. Every 

set created in the evoID node is carried along down the tree. 

 

The evoReformat node is, in its essence, used to reformat the sample-based image to a 

pixel-based image, for Nuke to continue working on. Due to this being the last sample-

using node it offers a lot of options and settings, which are shown in Fig. 4-4 and mostly 

self-explanatory.  

One feature to point out: within the 

“Set” dropdown all four sets from 

before are selectable with the options 

to either copy the selected set into 

alpha or RGB, to use as pixel-based 

mattes later, or to isolate the object 

and afterwards convert the image to 

pixels. The most important feature in 

this node is the dropdown to select 

different output formats, as this not only defines the image that will be used down the 

stream, but also shows one of the great advantages of a non-uniform workflow: 

resolution independence, which will also be further discussed in chapter 4.3 Advantages 

of Evotis. 

 

Fig. 4-5 shows a brief overview of three possible 

workflows while working with Evotis within 

Nuke. The red line indicates the border between 

the sample-based node-tree and the pixel-based 

part of the tree. A nice feature, compared to 
Fig. 4-5 - workflow examples 

Fig. 4-4 - evoReformat interface 
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deep, is the ability to directly attach pixel-based nodes to anywhere in the Evotis section 

of the tree without needing to attach a separate conversion node. 

 

4.3 Advantages of Evotis 

 

Some of the advantages, improved possibilities and new approaches of a sample-based 

image type are compared to the applicable flat or deep workflows in the following sub-

chapters. Each aspect, object isolation, ID mattes, advanced resizing and the possibility 

to refine renderings, will be covered in detail, each in a separate sub-chapter. 

 

4.3.1 Object Isolation 

 

One major advantage of the sample-based image type used by Evotis is the improved 

object separation within 

Nuke. A clean edge 

separation within a scene, 

traditionally done with 

specifically rendered object 

IDs and lately by using 

Cryptomatte (Friedman, et 

al., 2015), has usually been a 

problem-introducing task. 

Whether it’s due to anti-

aliasing, motion blur or 

semi-transparencies, 
Fig. 4-6 - object isolation comparison 
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separating an object and extensively changing its appearance usually leads to edge 

issues, for instance: dark or bright outlines, artifacts, NaN-, infinity-, hot-, dead- or 

freak-pixels.  

To illustrate this, a simple scene, containing two colored spinning toruses and a 

checkerboard, was setup in Maya. The resulting rendering can be seen in the top-left 

corner of Fig. 4-6. The three sub-images, forming the bottom row, demonstrate three 

different ways of separating the yellow torus from the background checkerboard and the 

red torus. In (a) Cryptomatte was used, clearly showing the checkerboard beneath the 

semi-transparencies due to the motion blur. In (b) a combination of a deepCrop and 

Cryptomatte was used, already resulting in a better separation, but still with a clearly 

visible outline of the red torus. Lastly, in (c) Evotis was used, resulting in a clean torus 

separation, without the visible edge of the red torus. The slight red coloring of the torus 

is bounce light and therefore is correctly separated. This bounce can also be seen in the 

top-right corner of Fig. 4-6, showing all 576 samples of one pixel in the area of 

overlaying motion. Besides the expected yellow, red and blue there are also orange, pink 

and other mixed value samples visible, which are colored like this due to the bounce 

light in between the objects. This sample square also visualizes clearly why the flat pixel-

based approach from (a) was unsuccessful. 

Also the outer-edge area retrieved with Evotis is bigger, as even the faintest motion-

blurred samples are object-related and therefore retrievable, which will prevent edge 

issues from occurring during recombination, as can be seen in Fig. 4-7 in which 

approach (b) and (c) from Fig. 4-6 were used to first separate the yellow torus, then 

recolor it pink and finally recombine it with the background. It is evident, that method 

(b), deepCrop and Cryptomatte combined, produces a visible outline, resulting from 

left-out yellow pixels, in the far-out motion blurred areas, whereas method (c), Evotis, 

produces a solidly recolored torus without any visible outline. This example was, of 
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course, constructed to provoke this 

behavior, but similar problems occur in 

compositing on a daily basis, but are 

more complex to solve as a simple 

deepCrop, as used here, will not work in 

dynamic scenes. This usually means 

edge work of any kind, which leads to 

more work for the artist resulting in 

slower turn-arounds. 

The accurate separation of an object also 

allows for relighting and texture 

projection to produce highly improved results, as these operations very often generate a 

visible outline, due to the strong changes applied to these areas. 

 

4.3.2 ID Mattes 

 

Traditionally ID mattes had to be set up by the 3D artist manually as separate render 

layers, usually containing a maximum of three mattes per layer, saved in r,g and b 

respectively, to later be used by the compositing artist. Complex scenes demanding 

more than three mattes also required multiple render layers, all manually set up by the 

artist, and often just a guess as to which objects will need mattes.  

Evotis offers all mattes that could have been created to the compositing artist by using 

evoID, as explained previously. As all hierarchical Maya information is preserved, 

navigating complex scenes to pick specific mattes is easy and structured.  

Fig. 4-7 - edge comparison 
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A similar approach to matte generation is used by Cryptomatte and OpenEXR/Id1, both 

also allowing the compositing artist to interactively generate mattes, also both using a 

3D hierarchy one way or another. While Cryptomatte uses multiple separate render 

layers, OpenEXR/Id uses a sidecar file and only functions with deep images. 

Cryptomatte has spread throughout the industry quickly over the last year and will 

probably become a standard soon. (Friedman, et al., 2015) (Corvazier, et al., 2016) 

In conclusion Evotis’ approach is not a novel one, although all these were developed 

roughly at the same time, but as it is sample-based it is more precise and offers a more 

versatile usage. 

 

4.3.3 Resolution Independence and Resizing 

 

Due to the non-uniform and non-rasterized nature of, and the amount of extra 

information stored by, Evotis, working independently of source- or delivery resolution 

opens up a lot of possibilities for new workflow approaches. Additional opportunities 

for saving rendering time and better preserving image quality, if repos are needed, also 

arise. Currently Evotis has no set of transformational tools available within the tested 

version of the Nuke plug-in. The rescaling capabilities on the other hand, are fully 

supported already, with rescale limitations only defined by the minimum samples saved 

per pixel, which is a user-definable value. Tripling the image resolution in compositing 

generates an image as free of quality loss as scaling it by a factor of 1.1, compared to a 

scaling operation on a rasterized image, which deteriorates in quality with every 

operation as filtering needs to be applied. To visualize this, an adaptively sample-

optimized Evotis rendering, with a resolution of 462x260 is scaled up to full HD, 

1920x1080, a rescale by a factor of 16. In Fig. 4-8 a 500% zoom-in of the resulting scaled 
                                                      
1 https://github.com/MercenariesEngineering/openexrid 
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up Evotis (a), of a flat rendered natively at full HD (b), and of a flat, 462x260px, scaled 

up to full HD using the cubic filtering algorithm (c) are shown. As can be seen, there are 

no apparent visual differences between the scaled up Evotis and the native flat, especially 

compared to the results of the scaled-up flat rendering (c), which shows a clear decline 

in image quality due to the rescaling. 

 

4.3.4 Refining Renderings 

 

Evotis enables the compositing artist to append samples to a rendering and thereby 

refine the original render quality. This in turn allows a rendering artist to refine his 

previous rendering by re-rendering with another sampling seed resulting in differently 

positioned samples, thereby correcting areas with artifacts without wasting the previous 

rendering output and time. This could be a very useful feature for quick last-minute 

fixes. To determine whether this approach can correct flickering a sequence with 

different soft light gradients was rendered and afterwards re-rendered with a new seed 

to be appended. To better visualize the results, the sum of each frames absolute 

Fig. 4-8 - scale-up comparison 
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difference to the sequence average was used, thereby highlighting the strength of noise 

and flickering present in the sequence: 

 

� 𝑑𝑑𝑎𝑎𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) −  
∑ 𝑓𝑓𝑓𝑓𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ
𝑖𝑖=0

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ
�

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ

𝑘𝑘=0

 

 

The results are shown in a split image in Fig. 4-9. The top half is the result of the base 

renderings summed up differences, while the bottom half is the result after appending 

new samples. The improved noise level is evident due to the whole image being darker; 

less difference in between the frames means lower values. This proves that appending 

new samples can lead to improved noise levels in a rendering, thereby allowing for 

possibly refining renderings in case a quick fix or last-minute changes are needed. 

Fig. 4-9 - noise level comparison 
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4.4 Disadvantages of Evotis 

 

Any new technology, even though offering many advantages and advances, has its 

drawbacks. For VFX, and Evotis as well, these drawbacks are usually hardware related: 

file size, performance or render time, which will all be covered and tested in detail in 

this and the following chapters. Furthermore Evotis also lacks deep data support in the 

current beta version, which is a major problem, as this feature is essential to any possible 

industry acceptance.  

 

The big conceptual problem of Evotis, at least at this stage, is its inability to preserve and 

use deep information properly. While it is possible to render a Z-depth AOV on a per 

sample basis, it is not possible to render two samples behind each other, which means 

atmospheric renderings are not a viable option at this point. Therefore it is also not 

possible to use Evotis to generate holdouts or merge correctly in depth. All of this is 

especially important, as the main reason deep is now as widespread are its advantages in 

dealing with atmospherics, and combining multiple assets correctly by utilizing the 

depth information. Therefore, Evotis is, at least with this version, not a suitable 

competitor for deep, as without depth samples any company would still need to keep 

deep in their pipeline as well, resulting in three different image types used in parallel, 

which will not be an option. But as GoGhost has pointed out, this is a renderer specific 

issue, and has already been solved for other renderers than v-ray, therefore this should 

be solvable in the future and depth-spread samples could be available, but until now the 

lack of proper deep information is a knockout argument for Evotis. 

Due to all the information stored within an Evotis file one possible, and possibly also 

very important, disadvantage could be its performance in 3D and 2D as well as the 

resulting file sizes. Just as the slowed down workflow of deep has kept it out of most 
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VFX facilities for a long time, a loss in time, be it in rendering or while interacting with 

it in compositing, is a major drawback to any new technology and might hinder its 

success severely. As the performance will be of critical importance to Evotis, this will be 

tested and evaluated in detail in chapter 5 Performance Evaluation.  

 

 

4.5 Future Possibilities 

 

As Evotis is in its early, non-public, beta phase, there is still a lot of room for further 

improvements and possible features or use-cases to be added. In this chapter three 

exemplary possibilities, not exceeding already implemented base features, are given: 

specific re-rendering area selection, viewing angle independence and an Evotis library.  

 

4.5.1 Precisely Specified Render Areas for Re-rendering 

 

To be able to use the possibility to append samples effectively, an array of further option 

could be implemented. Being able to select the area for re-rendering based on an area of 

interest, object IDs, shadowed areas, based on the sample count per pixel or a 

combination of them all will lead to more effectively used render time, as artists can 

gradually improve the quality dependent on shot needs without losing all previous 

rendering efforts. 
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4.5.2 Viewing Angle Independence 

 

As soon as the depth support for Evotis will function properly, generating a point-cloud 

of samples within Nuke could allow the compositing artist to change the viewing angle 

of a rendering, to a certain degree at least. While the concept was also proposed for deep 

multiple times, it never really was used, as the needed reconstruction algorithms to fill 

the gaps in between the points were missing. But as Evotis is based on area 

reconstruction, changing viewing angles could become a viable option. This could lead 

to possibly not needing to create a second rendering for stereo productions, as the shift 

in perspective is quite low. This could be further optimized by allowing an occlusion 

rendering option to render overlapped areas to a certain degree, to sufficiently cover the 

areas needed for correctly generating the parallax. Another possible workflow could be 

to render and append only the samples needed for parallax, which could be easily 

accomplished, if the previously mentioned area selection for resampling gets 

implemented in a versatile enough way, by generating the new samples based on a 

camera projection map of the hero-eye camera identifying the areas that will be 

occluded and therefore need further samples rendered. 

 

4.5.3 Evotis Library 

 

Due to the non-uniform nature, and the rescale ability Evotis renderings can be used to 

build a library that is more versatile due to its resolution independence and the 

automatic ID function. In combination with the before mentioned probable possibility 

to adjust viewing angles to a certain degree it allows a compositor to use a single 

rendering for a multitude of different shots, thereby allowing the library to keep a 

smaller quantity of files with increased use-cases. 
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5 Performance Evaluation 

 

As previously mentioned the performance of Evotis, in 3D as well as in 2D, will be a 

decisive factor for its possible success and acceptance within the industry, as no VFX 

company can allow loosing time in such a competitive market, therefore several 

performance monitoring tests are conducted and evaluated in this chapter.  

Another important aspect, and therefore also discussed, is the file size, an aspect that has 

also kept deep away from widespread use at first. Even though the average cost per  GB 

has dropped significantly, from 1.60$/GB in 20031 to 0.03$/GB today2 small file size is 

still important, as larger files will also lower the performance in compositing 

significantly by flooding the cache and needing more bandwidth within the local 

network.  

 

 

5.1 Test Method 

 

For 3D performance testing Evotis v1.61 private beta was used with four different 

Autodesk Maya 2017 scenes highlighting different key aspects. Each scene was batch-

rendered with Chaosgroups V-Ray for Maya 3.60.04 while the hardware performance 

was measured using Open Hardware Monitor 0.8.03 set to two second intervals, with all 

                                                      
1 http://www.mkomo.com/cost-per-gigabyte 
2 https://www.alternate.de/Festplatten/SATA/ 
3 Open Hardware Monitor Homepage: https://openhardwaremonitor.org/ 
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files being read and written to an internal SSD. To determine the rendering times 

accuracy of the monitored frames at least ten frames of each scene were rendered, and 

the median rendering time was compared to that of the performance monitoring result. 

If the deviation exceeded 5% the frame was re-rendered and re-monitored. 

 

For 2D performance testing the resulting flat, deep and Evotis files from the 3D tests 

were loaded from a local SSD, modified and rendered to the same SSD with the 

command line renderer of The Foundry’s NukeX 10.5 and a custom Python script 

generating the needed render logs. Each frame was rendered at least 50 times and values 

given in this chapter are the resulting averages. Evotis v1.61c private beta was used, as 

this updated version included a few Nuke-related bug-fixes. Performance was measured 

using Open Hardware Monitor 0.8.0 set to one second intervals.  

The resulting .csv files of both, 3D and 2D testing, were cleaned-up and parsed into .xls 

files to be visualized. For these tests all CPU, GPU and RAM related information was 

logged.  

 

 

5.2 3D Test Results 

 

For the 3D tests only the percentile CPU load will be visualized and discussed, as, due to 

the nature of the test scenes used, neither RAM, GPU, nor disk writing speeds played 

any role for the final results.  
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Fig. 5-1 - rendering of 3D test scene 1 

5.2.1 Test Scene 1 – Simple Scene 

 

The initial performance test 

conducted, using the small-scale 

hard-surface scene that produces the 

image seen in Fig. 5-1, was supposed 

to determine the differences of the 

sample optimization options.  

As can be seen in graph 5-1, and 

even better in graph 5-2, the time differences between the various resampling settings 

are negligible. As expected, keeping all samples in the files yields the fastest render time, 

but possibly also the largest files. The resampling yields a slightly shorter rendering time 

compared to the adaptive method, which was to be expected as well, as the resampling is 

a threshold-based deletion and repositioning of the remaining samples, rather than the 

content-dependent approach of the adaptive option.  

 

graph 5-1 - initial testing of different Evotis sample optimization options 
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graph 5-2 -  zoom-in of last portion of graph 5-1 

For graph 5-3 the percentile CPU loads of the corresponding flat and deep renderings 

were added and, for the sake of clarity, only the plots of the full sample Evotis and the 

adaptive Evotis rendering were kept, as these two indicate the range of possible Evotis 

rendering times.  

graph 5-3 - comparison of Evotis to flat and deep 
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The graph clearly shows, that all Evotis renderings take longer than the respective flat 

rendering, but, the deep rendering and the full sample Evotis rendering produce similar 

rendering times. This indicates the possibility, that the Evotis rendering samples are all 

generated at rendering time. After further testing this proved to not be the case and was 

just coincidental here, as the render time of the Evotis without sample optimization was 

significantly longer than that of the deep rendering in all other tests conducted.  

 

The increased time difference, ∆(t), between the flat and Evotis renderings, of the half-

res and the full-res rendering is also evident in graph 5-3. To determine the growth-rate 

of ∆(t) the same scene was rendered in nine different resolutions, always doubling 

vertical resolution with additional half-way steps to avoid 14k+ renderings. The 

adaptively optimized rendering was used for this test. The results can be seen in graph 

5-4. While ∆(t) rises exponentially, in parallel with the amount of pixels, f(t) remains 

roughly the same, indicating a constant relation between flat and Evotis render times for 

this test scene. 

𝑓𝑓(𝑜𝑜) = 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆

                     ∆(𝑜𝑜) = 𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸 − 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆 

graph 5-4 - numerical and relative time differences of renderings in different resolutions 
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The size of an Evotis file is greatly influenced by the sample optimization options, as 

they determine the number of samples saved, and thereby the amount of data saved. For 

these test the same scene was rendered in HD540 and HD1080 to visualize the relation 

better. It is apparent in graph 5-5 that a non-optimized Evotis file is unproportionally 

large in relation to a flat rendering, 113 times the size for the low-res (HD540) rendering  

and 88 times as big for the full HD rendering, while a resampled-to-minimum version is 

only 2.25 (540) or 2.4 (1080) times as large. In the lowest-quality settings the Evotis files 

are smaller than the equivalent deep, although in this setting most of the advantages of 

the image type are non-existent, therefore it is the most interesting to look at the 

adaptively optimized and resampled versions with at least a 2-4 setting. The files 

generated with the adaptive setting are 24 (540) and 16 (1080)times larger than the 

corresponding flat, while the 2-8 resampled files are only 7.1 (540) and 7.0 (1080) times 

bigger. These measurments clearly show the importance of sample optimization for 

Evotis to be usable.  
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graph 5-5 - file size comparison (log scale) 
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Another important aspect concerning file size is to determine the relative file sizes 

behaviour, f(s) and d(s), with increasing resolution. 

 

𝑓𝑓(𝑠𝑠) =
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆

            𝑑𝑑(𝑠𝑠) =
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑

 

 

Therefore nine diffeerent resolutions were rendered each in flat, deep, Evotis adaptive 

and Evotis adaptive resample 2-8 and the resulting file sizes compared. While the 

f(s)resample curve roughly stays at a value of 7, slighty declining over the range, as can 

be seen in graph 5-6, f(s)adaptive on the other hand shows a clear decline over the range 

of resolutions rendered, from 23.8 to 6.9. This indicates that the adaptively optimized 

renderings cope progrssively better with higher resolutions, which is due to the Evotis 

internal file compression algorithm. The adaptive resample rendering, on the other 

hand, can maintain a factor of 7 throughout the resolution range. For d(s)adaptive a 

graph 5-6 - file sizes at different resolutions 
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similar decline can be seen as with f(s)adaptive, although on a smaller scale, while 

d(s)resample, contrary to f(s)resample, shows a slight incline in values, from 1.6 to 2.0.  

After this initial test none of the following tests will use Evotis full sample renderings, as 

it is unrealistic for any VFX company to use the full sampled Evotis file, simply due to 

the enormous file size, instead the adaptively optimized version will be used, as it is the 

longest render time and thereby functions as a maximum render time indicator, as well 

as at least one resampled 2-8 version for reference.  

 

 

5.2.2 Test Scene 2 – Motion Blur 

 

The next test is based on the scene previously used in chapter 

4.3.1 to demonstrate object isolation, shown in Fig. 5-2. The 

goal here was to determine the effect of motion blur and semi-

transparencies on the render time.  

It is clearly visible in graph 5-7 that the large amount of samples 

needed to generate the motion blur, 576 in the example pixel in 

chapter 4.3.1, also prolonged the Evotis render time, as all of 

those samples needed to be post-processed, resulting in a 

render time 3.4 times as long as the flat rendering and 2.5 times as long as the deep 

rendering.  

Fig. 5-2 - rendering of 3D 
test scene 2 
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After determining the constant relation between flat and Evotis rendering times for the 

first test scene, by rendering the same scene in multiple resolutions, the same procedure, 

limited to seven different resolutions this time, was repeated for this scene, but with the 

addition of resampled Evotis renderings and deep renderings. The results can be seen in 

graph 5-8. While a constant relation between the resampled version and the flat is not as 
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graph 5-7 - render time of motion blur scene 
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clearly visible here, as it was in the first test scene, it can still be considered a constant 

relation with a value of 3.82, the median over the tested range of resolutions.  

 

This is an increase of roughly 100% compared to the first test scene, which is due to the 

increased number of samples needed for the motion blur and semi-transparencies, 

indicating that Evotis render times increase disproportionally compared to flat 

rendering times, with increasing scene complexity.  

Due to the increased amount of samples needed the file sizes, and the relative file size 

factors, f(s) and d(s), also increased, as shown in graph 5-9 and in the more detailed size 

factor plot in graph 5-10.  

 

𝑓𝑓(𝑠𝑠) =
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆

            𝑑𝑑(𝑠𝑠) =
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸
𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑
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A general increase was to be expected, as in a flat only one set of values per pixel gets 

saved, regardless of its contents, producing, not accounting for compression, content-

independent file sizes, whereas Evotis’ file sizes greatly depend on the images content. 

Nevertheless, a file size, on average, 140 times larger, especially for such a simple scene, 

for the adaptively optimized Evotis renderings, exceeds the scope of possibly being 

usable by far. Even the resampled 2-8 version is unlikely to be properly usable, as the 

files are, on average, 16.9 times as large as the flat rendering.  

As a reference, the relation between deep and flat file size is also visualized in the graph, 

showcasing how disproportionally large the Evotis files are, even compared to deep, 

which is often criticized for producing files that are too large. Of course the Evotis file 

can still be reduced, by choosing different settings, a 2-4 resampling will generate a file 8 

times larger than the flat and around 3.5 times larger than the deep rendering, a 2-3 

resampling is 7.2 times larger than the flat and 3.0 times larger than the deep. Lowering 

the settings further would not make sense, due to losing the advantages Evotis can offer. 
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5.2.3 Test Scene 3 – Fur  

 

The third test scene was designed to 

contain many object edges, to test 

whether this has any influence on 

the rendering times and file sizes. To 

achieve as many edges as possible a 

scene containing multiple fur 

elements was used, a rendering of 

which can be seen in Fig. 5-3. 

 

For this test scene Evotis with the adaptive optimization option took 2.5 times as long to 

render as the regular flat and the resample 2-8 version took 2.14 times as long, which is 

shown in graph 5-11. After having shown a constant relation of rendering times in the 

first two test scenes it can be assumed, that the relation will also be a constant one again.  

Fig. 5-3 - rendering of 3D test scene 3 

 

graph 5-11 - fur rendering results 
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Looking at the file size, the adaptive version was 365 times as large as the flat rendering, 

the resampled 2-8 version was 25 times as large, and 4.5 times the size of the 

corresponding deep rendering. The resample 2-4 version was 9.0 times as large as the 

flat, and 1.6 times as large as the deep.  

As with the render time, it can be assumed, that the file sizes of the resampled 

renderings will also have a constant relation again. To confirm these assumptions a spot 

check at two higher resolutions was conducted. As expected the relation between render 

times proved to be a constant again, with an average value of 2.6 for the adaptive/flat 

and 2.3 for the resample2-8/flat version. 

The file size relation, on the other hand, did not prove to be constant, therefore the full 

range of resolutions was rendered and the results are shown in graph 5-12. Due to a 

reproducible error no renderings with a resolution higher than 2160 were possible, as 

the beta version crashes the system once the temp file containing the preliminary 

renderings are loaded for sample conversion, possibly due to sample counts getting too 

high, therefore the range of resolutions was adjusted accordingly.  
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As can be seen all curves show a decline in values over the tested range, without any 

possible threshold discernible. This behavior is due to a reduced object-edge/pixel ratio 

at higher resolution, allowing the adaptive minimum threshold to apply to more pixels 

as there are not as many object edges present within a single pixel.  

 

 

5.2.4 Test Scene 4 – Fur with Motion Blur 

 

The last test scene was a long 

rendering one, due to a higher 

ray sample count and a more 

complex scene, fur with motion 

blur, as shown in Fig. 5-4, rather 

than higher resolution. As can be 

seen in graph 5-13 the adaptive 

Evotis renderings took, 2.57 
Fig. 5-4 - rendering of 3D test scene 4 

graph 5-13 - render times of long rendering scene 
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times as long. The constant relation of render times, as proven before, also applies here, 

as confirmed by two higher resolution spot checks, with a resulting average value of 

2.65. 

Relative file size has, as expected, increased with the adaptively optimized version being 

339 times larger than a regular flat rendering, the resampled 2-8 version 23.9 times 

larger and the resampled 2-4 version 8.8 times. Compared to the deep rendering, the 

resampled 2-8 version was 4.3 times larger, and the resampled 2-4 rendering was 1.6 

times larger, all these relations measured at low resolution.  

After conducting a spot check at higher resolutions it was evident, as in test scene three, 

that no constant relation could be determined between the resampled renderings and 

the flat renderings file sizes. Therefore the full set of renderings throughout the 

shortened resolution range was conducted, as the same system crash during the sample 

conversion step occurred for these tests as well. The results are shown in graph 5-14.  

Again, as in test scene three, the graphs show a decline over time, but not a discernible 

threshold.  
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5.2.5 Summary of 3D Tests 

 

A brief summary of the results obtained throughout the tests performed in the last four 

chapters is shown in Table 1. 

 

 

 

 

 

 

 

It is evident, that the render times, f(t), are mostly of a constant nature, with only the 

exception of the adaptive render time in test scene 2, which is due to the very simplified 

geometry and scene setup in combination with strong motion blur. With respect to file 

size, f(s) and d(s), it is obvious that adaptively optimized renderings always display 

inconsistent relations to both, flat and to deep renderings. The adaptively resampled 

renderings on the other hand displayed a constant relation for the first two test scenes, 

but also shown inconsistent relations in test 3 and 4, due to increased scene complexity.  

 

5.3 2D Test Results 

 

For the 2D tests the percentile CPU and GPU loads will be visualized, as hard drive 

writing speeds, all test were run on a local SSD, and RAM did not contribute in any way. 

The resulted renderings of all previously utilized test scenes are used for 2D testing in 

this chapter. The Evotis files will be compared to flats and deeps for their performance 

 
Scene 1 Scene 2 Scene 3 Scene 4 

  f(t)adaptive 1.8 6.9 2.63 2.65 
 

constant 
f(t)resample 1.8 3.82 2.3 2.65 

 
average 

f(s)adaptive 12.9 140.6 195 184 
  d(s)adaptive 3.28 60 39.5 37.5 
  f(s)resample 7 16.9 15.5 14.8 
  d(s)resample 1.8 7.2 3.18 3.07 
  

Table 5-1 - summary of 3D test results 
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in Nuke, focusing on render times and hardware needs, as all rendered images from 

Nuke will be flats, therefore the resulting file size is of no significance. 

 

5.3.1 Initial Testing 

 

The initial test was conducted to determine whether the differently sample optimized 

renderings yield different render times in Nuke or utilize the hardware in different ways. 

Therefore three differently optimized Evotis files, full samples, adaptive optimization 

and adaptively resampled (2-8), at two different resolutions, HD and 15k, were used. 

Each one was read into a separate Nuke script from a local SSD, a single grade node was 

attached and then written to the local SSD again. The results of this test are shown in 

graph 5-15.  

As can be seen, the rendering time needed by any of the three files is roughly equal, even 

though the file sizes differ significantly, therefore it can be assumed, that the sample 

graph 5-15 - render time and file size comparison for different Evotis options 
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graph 5-18 - performance data of flat and deep rendering 
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optimization option chosen during the 3D rendering has no influence in the time 

needed in Nuke. To determine any differences in terms of hardware needs these tests 

were also performance monitored. By looking at the performance monitoring, shown in 

graph 5-16, it is evident that most of the Evotis rendering is CPU based when attaching a 

grade node directly to the evoReader.  
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graph 5-16 - performance data of first test without using evoReformat 
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On the other hand, graph 5-17 shows the performance data when using the evoReformat 

node to convert from samples to pixels within Nuke. As can be seen in the graph, the 

evoReformat node uses GPU rendering, allowing faster parallel processing of the large 

amounts of samples within the picture, on appropriate graphic cards. Due to an old 

graphics card in the workstation used for testing, and the lost comparability to flat and 

deep renderings, GPU rendering will not be tested further, but is important to keep in 

mind for possible performance gains in other testing environments.  

For reference the performance data from the corresponding flat and deep renderings are 

shown in graph 5-18. As can be seen neither flat nor deep uses more than 30% of the 

available CPU capacity, which is due to the fast native processing of the files within 

Nuke and the simple change, only one grade, applied in this test.  

Having determined the similar rendering times in between differently sample optimized 

renderings and the hardware needs all further tests will be using CPU-based rendering 

and a maximum of two Evotis types.  
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5.3.2 Results from 2D Test 1 

 

To assess the influence of different resolutions, and therefore file sizes and sample 

counts, the full range of flats, deeps, adaptive and adaptively resampled Evotis 

renderings from 3D test scene 1 have been processed with Nuke. The results, shown in 

graph 5-19, indicate a constant relation f(t) between rendering times, even though file 

size differences are inconsistent. 

 

With an average multiplying factor of 1.67 for the flat render time compared to the 

adaptive Evotis time, 1.4 times for deep, and a total render times of less than 45 seconds 

for 15k renderings it can be assumed, that the increased time needed, in this test, for 

Nuke renderings, are not going to be a factor for the acceptance and use of Evotis within 

the industry. 

𝑓𝑓(𝑜𝑜) =
𝑜𝑜𝑖𝑖𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖𝐸𝐸
𝑜𝑜𝑖𝑖𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆

 

 

graph 5-19 - absolute and relative render time comparison 
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To verify these assumptions the same test over the full range of resolutions is performed 

on the resulted renderings from 3D Test 2, 3 and 4. 

 

5.3.3 Results from 2D Test 2 

 

In graph 5-20 an increase of the relative time factor throughout the range of resolutions 

can be observed, indicating that a significantly increased number of samples throughout 

the image, in this case caused by the semi-transparencies of the motion blurred areas, 

constantly prolongs the render time. On the other hand, the same increase can be seen 

in the relation between the deep and flat renderings, as the increase in semi-transparent 

areas affects the file size and rendering power needed in a similar way. Especially if 

comparing the deep results to the adaptively resampled ones it is obvious, that an 

increase of roughly 40%, all occurring within a total time range of less than 10 seconds, 

should be irrelevant for Evotis’ success. 

 

graph 5-20 - absolute and relative render time comparison of 3D test scene 2 
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5.3.4 Results from 2D Test 3 

 

Graph 5-21 shows the results of test 3, multiple fur elements to provoke a large amount 

of object edges and semi-transparencies. As can clearly be seen the adaptively optimized 

renderings cope worse at lower resolutions than at higher ones, as indicated by the 

decline of f(t)adaptive plot over the tested range. This is due to a various edges 

occupying a single pixel at lower resolutions, compared to fewer for the high-res 

renderings, as the image is spread over a larger array of pixels. On the other hand the 

graph also shows, that the deep/flat relation and f(t)resample are highly similar, 

indicating a faster processing for Evotis, as the file size, as mentioned in chapter 5.2.1.3, 

is 4.5 times as large as the size of the deep file.  

 

 

 

  

graph 5-21 - absolute and relative render time comparison of 3D test scene 3 
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5.3.5 Results from 2D Test 4 

 

The results visualized in graph 5-22, derived from 2D test 4, are highly similar to the 

results of test 3 shown in graph 5-21, as both are based on the same scene, only with the 

addition of motion blur for test scene 4 to provoke even more samples being generated 

and saved. Therefore the observations and conclusions drawn are identical as before. 

 

 

  

graph 5-22 - absolute and relative render time comparison of 3D test scene 4 
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6 Conclusion 

 

After all the performance and file size tests described in the previous chapters it is clear, 

that Evotis, like most new VFX technologies, is very hardware intensive. This was, due 

to all the extra information preserved, to be expected to a certain degree. But with, on 

average, tripled 3D render times and significantly increase file sizes, it is questionable 

whether the discussed advantages will be enough to outweigh the strongly increased 

hardware needs.  

Obviously, at the current stage of development, Evotis is not production-ready, but it is 

important to remember that Evotis is still in the beta phase, and performance 

improvements are very likely to happen, as stated by the CEO of GoGhost, Jared 

Sandrew, they constantly discover new bugs within Evotis, Nuke and the 3D renderers 

used, that often improve performance. It was also confirmed by GoGhost, that the 

samples should all be generated at render time, this means a full sample Evotis 

rendering should not take significantly longer than a flat rendering. The occurring 

problems were probably caused by an error within the beta version tested, therefore 

increases in rendering time compared to the test results presented in this thesis can be 

expected, if the claims from GoGhost are true. 

 

The non-uniform approach chosen for Evotis bears the potential to simplify 

compositing workflows greatly as soon as there are transformational Nuke tools 

available. There will no longer be a loss in quality after repositioning was applied, there 

is no need for concatenation anymore, and no more filtering needs to be used for 
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transformations at all. Also missing, so far, is an Evotis expression node for Nuke that 

would allow the user to modify the Evotis files in a more technical way to explore their 

potential better. Offering these two nodes, of course, is only the beginning if Evotis is 

supposed to spread throughout the industry many more will have to follow, but with a 

transform and an expression tool a lot more potential could be explored and should 

therefore be the priority tools to be developed.  

To improve interactive Nuke performance a proxy workflow should also be added, 

allowing the user to set a percentile or absolute threshold for the number of samples per 

pixel used while working. 

 

But the main priority for Evotis should be to add deep support. As mentioned before, 

the ability to better work with atmospherics, creating holdouts and merging in depth 

were the main reasons deep became accepted as widely, even though it was slow and 

atmospheric deeps were huge. Therefore GoGhost should focus heavily on bringing 

depth support to Evotis soon, as this will be a key issue for its success, due to the fact, 

that replacing deeps is an option, replacing flats is not. 

As for the hardware intensity of Evotis improvements need to be made to lower the file 

size in a more refined way, one possibility would be a sample threshold option that 

preserves the randomly scattered samples, and the relation between the amounts of 

different objects samples within a pixel, rather than using a sub-pixel grid, as this will 

preserve the non-uniform nature of the samples better while also reducing the file size 

in complex scenes.  

More important though, than lowering file sizes, is shortening the render times, as a 

significantly prolonged render time will not be acceptable for a competitive company, 

while needing more storage might be. A possibility to improve render times, at least for 

the short-term, could be to render all Evotis files without any sample optimization, 
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which would be closer to flat render time, and then optimize within a separate post-

render job. This way the accompanying flats get finished faster, allowing the artists to 

start working while the post-processing of the Evotis samples is still running. Ultimately 

the Evotis code will need to be improved further, to allow for quicker renders, as tripled 

render times will most probably not be an option. 

On the other hand, the hardware intensity aspects will become less important over the 

next years, as hardware performance is constantly increasing, cloud computing is 

becoming a viable option, Athera1 is launching and other very hardware intensive 

technologies are emerging, e.g. lightfield or deep learning, or on the breakthrough that 

will force VFX companies to invest heavily into even higher performing hardware 

anyways.  

Another, not previously discussed, limiting factor for a potential success of Evotis is if 

and how GoGhost is planning to license it, as no company will be willing to invest time 

and resources for using Evotis if it is not an open standard, as any development and 

improvement will be limited to GoGhost only. 

 

In conclusion it is very difficult to predict whether Evotis will be successful and widely 

accepted in the industry this early in its development. The many advantages, non-

uniform images, resolution independence, appending samples and sub-pixel-perfect 

object separation, as well as the disadvantages, no samples in depth, longer render times, 

insufficient optimization options and larger files, have all been explained in detail. 

While including depth sampling will be essential, improving render times and 

minimizing file size will be important, but not as critical for the short term, 1-2 years, 

progression. After having included deep support broadening the Nuke support and 

                                                      
1 Formerly project Elara https://athera.io/ 
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developing new techniques and approaches based on a sample workflow, not easily 

possible with flats, will be decisive, while constantly improving performance.  

If this development phase will be successful and Evotis becomes an open standard it 

could well be possible for Evotis to be an industry-wide replacement for deep within the 

next 5-7 years, but it will probably never replace flats, just as deeps will never be able to 

replace flats.  

 

The other question is: will this timeframe be fast enough considering all the movement 

within the industry at the moment? Possibly a new approach will emerge over the next 

few years making rendered images as an intermediate obsolete altogether. 
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7 Further Work 

 

To further determine the usability and performance of Evotis a continued evaluation 

will be necessary with newer beta version releases. The most important aspects will be 

the testing of the inevitable integration of deep data, and the handling of all 

subsequently arising problems with, probably again drastically, increasing file sizes and 

lowered performance.   

Another issue in need of further testing is the rendering time, especially the claimed 

creation of all samples at render time, as this was not verifiably with this beta version. 

The claims that the prolonged rendering times were a bug and have been tested with 

older versions successfully, by GoGhost, need to be confirmed independently and 

furthermore a new range of rendering time and performance monitoring tests need to 

be conducted, to verify the shortened time applies to a wide variety of situations.  

An additional interesting area for future research are the possibilities for new workflow 

approaches and techniques possible with Evotis, that were formerly not, or not as easily, 

achievable in compositing and rendering. Different workflow approaches using the 

rescaling capabilities could be tested and evaluated to define a range of possible best-

practice solutions. The same could be done with an in-depth look into sample 

optimization and the resulting advantages and disadvantages for image quality, 

scalability, workability and file size, and cataloging these findings in a guideline for 

sample optimization. 

Furthermore there needs to be in-depth research on the integration of Evotis into a large 

scale pipeline, distributed rendering, post-job optimizations, color and metadata 
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workflows, as well as into the development of Nuke gizmos to broaden the usability to 

postpone the pixel conversion, ideally creating a fully sample based workflow as far as 

possible. 
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