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Abstract
Virtual production stages with LED walls utilize illumina-

tion, display, and camera equipment which was not designed with
this use case in mind. Because the spectral sensitivity of a camera
is different from a human observer, a device specific calibration is
required. Furthermore, the illumination spectrum emitted by the
display contains large gaps in the cyan and yellow wavelength
ranges and is dissimilar to the light sources for which cameras
are designed. This causes object colors to be reproduced by the
camera in an unnatural manner, making cinematographers hesi-
tant to use LED walls as their primary light source.

In this paper, a display calibration and camera color cor-
rection workflow for LED wall virtual production stages is pro-
posed. A linear color correction matrix and the spectrum of a
multi-channel LED fixture are jointly optimized to better repro-
duce object colors simultaneously illuminated by an LED display
and the multi-channel fixture as they would appear under high
CRI (Color Rendering Index) light sources. An alternative color
correction method using root polynomials is found to further im-
prove color reproduction. It is shown that the camera’s response
to the display can be characterized by a linear 3× 3 matrix and
the display can be calibrated using the inverse of the color cor-
rection, allowing for a color accurate reproduction of a virtual
environment.

Introduction
LED video walls have seen widespread usage in outdoor ap-

plications since the late 90s [1] and offer a variety of benefits over
other display technologies. Nowadays, they can reach high lu-
minance levels, a wide color gamut, and a large dynamic range
in dark viewing environments. Their novel use case in virtual
production movie stages, however, differs from the technical re-
quirements of a human viewer in some key aspects. The issues
that this paper investigates are related to the reproduction of color
when LED walls are photographed with a motion picture camera.
These challenges can be divided into three categories:

Display Calibration
Within a virtual production workflow, the creators of the vir-

tual environment need to make color critical decisions on a cal-
ibrated monitor and later get the result they expected after the
scene is recorded with a camera. When a display is calibrated by
the manufacturer, it is done so with a human observer in mind.
Cameras, however, have spectral sensitivities different from hu-
mans and consequently require a separate calibration. We there-
fore introduce a display and camera specific color calibration and
color management workflow which allows for an accurate repro-
duction of the virtual environment’s colors.

Object Color Reproduction
The appearance of an object’s color is dependant on the

spectral sensitivity of the observer, the illumination, and the re-
flectance of the object itself. Digital cameras employ a color cor-
rection step in the image processing pipeline such that the color
of common objects under common illumination spectra can be re-
produced in an accurate and aesthetically pleasing manner. LED
screens, on the other hand, are not designed to be used for object
illumination. Their white spectrum is different from the common
illuminants for which the camera’s color correction is optimized
and contains large gaps where cyan and yellow wavelengths have
a low relative intensity. This paper investigates whether the color
fidelity can be improved by altering the camera’s image process-
ing.

Color Consistency between Illuminants
In virtual production studios, the lighting provided by the

LED walls is usually augmented using traditional film lighting
equipment. Because these light fixtures do not exhibit the same
spectral gaps as the LED wall, an object’s color can appear very
different depending on how much each light source contributes to
the overall illumination.

Related Work
Reproducing background colors when directly photograph-

ing the LED display has been subject of multiple publications
which share a similar process. James et al. [2], LeGendre et al.
[3], and Weidlich et al.[4] showed that a linear transform can be
obtained by measuring the camera’s responses to the LED panel’s
primaries. LeGendre et al. [3] further investigated whether an-
other post-correction matrix can be found that corrects the camera
image such that objects illuminated by the LED display appear as
they would under reference illuminants. By applying the inverse
of the post-correction matrix to the display signal, they maintain
the display calibration. Even though their experimental and theo-
retical results match closely, a non-negligible error remains in the
lit color-checker’s reproduction, possibly due to the limitations of
the linear post-correction method.

In the field of image based lighting, efforts have been made
to reproduce a reference illuminant’s color rendition using a mul-
tispectral light source. LeGendre et al. [5] used a camera to cap-
ture color charts lit by a reference illuminant and by each of the
multispectral light source’s LEDs. They then found a linear com-
bination of LED spectra by regression that most closely repro-
duced the reference color chart’s appearance.

Our Approach
To avoid the limitations of the linear color correction (LCC)

method, we chose the root-polynomial color correction method
(RPCC) by Finlayson et al. [14]. Because the RPCC has more de-



grees of freedom, it is more prone to overfitting and can produce
unstable results outside of the training data. To combat this, we
used spectral measurements, camera spectral response functions,
and a large dataset of object reflectances rather than photograph-
ing a color chart with a limited number of patches.

To improve the color consistency between the LED wall
and additional lighting, we jointly optimize the spectrum of a 6-
channel LED fixture and the camera’s color correction so that the
same correction can be applied regardless of each light source’s
contribution.

Similar to prior work [2, 3, 4], we characterize the camera’s
response to the LED panel and apply its inversion and the inverted
color correction to pre-process the background image. Because an
exact inverse of the RPCC cannot be found, we propose a method
for approximating the inverse of the RPCC.

Background and Equations
Image Acquisition

Because our methods rely on radiometric simulations, we
first explain how we predict the camera’s response to the LED
panel and to light reflected off an object. We later use this princi-
ple to optimize the color correction and the multi-channel illumi-
nant.

The response of the camera sensor can be be computed from
radiometric quantities if the light incident on the sensor is cre-
ated by a light source with spectrum E reflecting off a lambertian
object with a spectral reflectance R [6]:

ck =
∫

ω

E(λ )R(λ )Qk(λ )dλ , k ∈ R,G,B (1)

with ω as the domain of visible light wavelengths and Qk as the
spectral sensitivities for each of the red, green, and blue the color
channels k. The same relation can be written in discrete form:

c = R⊺ diag(E) Q, c ∈ R3 (2)

where R is an n-element vector sampled from R(λ ), E is an n-
element vector sampled from E(λ ), and Q is an n×3 matrix sam-
pled from the color channels k in Qk(λ ).

Similarly, the tristimulus response of a human observer to a
radiance spectrum can be modeled:

cXYZ = R⊺ diag(E) QXYZ (3)

where QXYZ is obtained from the CIE 1931 2° XYZ color match-
ing functions [7].

In the image processing pipeline of motion picture cameras,
the image is then white balanced such that the response cwb to the
illuminant E has equal elements [8].

cwb = diag(wb) c; wb =
1

cG(E)
c(E) (4)

Color correction
A camera satisfies the Maxwell-Ives criterion (often also

called Luther condition) if its spectral sensitivities Qcam
k are a lin-

ear combination of the CIE color matching functions QXYZ
k [9].

Such a camera is called colorimetric. It is, however, not always

desirable to design the sensor such that it satisfies this condition.
Noise performance, for example, can be improved by deviating
from the color matching functions [10]. Likewise, the sensors
used in motion picture cameras also do not satisfy the Maxwell-
Ives criterion and are not colorimetric [8]. This has two main
consequences:

1. There is no 3×3 matrix that accurately converts all camera
tristimulus values to the correct XYZ values.

2. Two spectra that produce a metameric match for a human
observer may not create matching tristimulus values as ob-
served by the camera.

Despite consequence 1, a 3 × 3 matrix Mrgb→xyz is commonly
applied for the conversion to XYZ tristimulus values. While a
nonlinear color correction transformation may improve the col-
orimetric accuracy of the camera, a well-optimized 3× 3 matrix
can still yield satisfactory results [8]. A matrix also has several
advantages, including an easy to compute and numerically exact
inverse transformation as well as exposure invariance.

The matrix optimization method recommended for motion
picture cameras [8] is similar to the white point preserving color
correction by Finlayson et al. [11]. A set of n measured or sim-
ulated camera responses is placed in an n× 3 matrix L and the
corresponding target values in XYZ are placed in another n× 3
matrix N. The aim of the optimization is to find a matrix Mrgb→xyz
such that:

N ≈ LM⊺
rgb→xyz

subject to Mrgb→xyz

1
1
1

= w
(5)

Meaning that Mrgb→xyz is constrained to preserve white w. Fin-
layson et al. [11] note that, for a white point w = (1,1,1), this
constraint can be enforced by ensuring that the sum of each row
in Mrgb→xyz is one. This observation can be generalized to any tar-
get white point w as shown in equation (6). The parameter given
to the optimization function can be reduced to a 3× 2 matrix U
and then expanded into the 3×3 matrix Mrgb→xyz inside the error
function as follows:

Mrgb→xyz(U,w) =

U1,1 U1,2 (w1 −U1,1 −U1,2)
U2,1 U2,2 (w2 −U2,1 −U2,2)
U3,1 U3,2 (w3 −U3,1 −U3,2)

 (6)

To find the approximation ≈ in equation (5), Finlayson et al. [11]
propose the method of least squares:

U := argmin
U

|N −LM⊺
rgb→xyz(U,w)|

= argmin
U

√√√√ n

∑
i=1

3

∑
j=1

(Ni, j − [LM⊺
rgb→xyz(U,w)]i, j)2

(7)

By slightly modifying the minimization problem, the optimiza-
tion can be catered towards the color appearance of the human
visual system. Instead of computing the squared differences in
the target color space, the more perceptually uniform error space



CIELUV is used. The transformation from XYZ to CIELUV val-
ues is denoted L .

U := argmin
U

n

∑
i=1

√√√√ 3

∑
j=1

[L (N)i, j −L (LM⊺
rgb→xyz(U,w))i, j]2

(8)

Overall, the color processing pipeline from the camera re-
sponse to a colorimetric representation using a linear color cor-
rection method (LCC) can be expressed as follows:

ĉXY Z = Mrgb→xyz diag(wb) c (9)

Image Presentation
In order to colorimetrically reproduce the color values en-

coded in the image on a display, a conversion must occur. First, a
function must be known which maps the signal values received by
the display to the corresponding spectral radiance. Assuming the
signal values of the red, green, and blue color channels each map
to the spectrum of the red, green, and blue display pixels respec-
tively with a per-channel electro-optical transfer function EOTF,
the spectrum emitted by the display is simple to compute:

Edisp = S EOTF(v) (10)

Where S is a n×3 matrix of sampled spectral radiances with each
column representing the spectrum of the display’s red, green, and
blue color channels respectively.

If the display signal values are pre-processed by the inverse
of the EOTF v = EOTF−1(vlin), the reproduced stimulus d of an
observer can be modeled using a linear 3×3 matrix Mdisp→obs.

d = [S EOTF(EOTF−1(vlin))]
⊺ Q = S⊺Q vlin (11)

Mdisp→obs = S⊺Q (12)

Categorizing Color Reproduction Errors
The choice of target values N in the equation (8), for which

the color correction is optimized, should be discussed. Figure 1
shows a set of circumstances in which a color difference can oc-
cur.

Because the objective is to optimize a camera’s color correc-
tion for specific non-reference light sources (in our case an LED
display and a multi-channel LED fixture), only errors E3, E4, and
E5 are considered.

E3: Camera error at light source
This error arises when comparing the colorimetric measure-

ment of a given scene under a given illuminant with the reproduc-
tion of the same scene and illuminant when observed by a camera.
If this error is subject to minimization for the color correction, any
color differences caused by error E2 will remain in the final color
reproduction.

Figure 1: Categories of color errors between observers and illu-
minants. Based on a figure from [12].

E4: System error
The system error is produced by a camera under a given light

source when compared with how a human observer would per-
ceive the same scene under a reference illuminant. Minimizing
this error can produce a more natural appearance of memory col-
ors like skin tones [13].

E5: Mismatch error
If the spectrum of a given light source differs from a refer-

ence illuminant, the reflected object spectra differ as well and a
camera will experience different tristimulus values. If two illumi-
nants are present in a given scene, a color correction which affects
the entire image cannot eliminate the mismatch error.

Hypotheses
Previously, linear models for the image acquisition and pre-

sentation were described. The calibration and color correction
methods proposed in the following sections rely on these models
and on a set of hypotheses. If all hypotheses are found to be true,
a color management process can be stipulated with which accu-
rate and aesthetically pleasing colors can be captured despite the
challenging environment of a virtual production stage.

1. Display characterization: There is a linear 3x3 matrix with
which the tristimulus values of the camera can be predicted
when photographing the display (equation (11)).

2. Display calibration: The inverse of the prediction matrix
from hypothesis 1 and the inverse of the camera’s color cor-
rection can be applied to a target color such that it is repro-
duced by the camera when photographing the display.

3. Color correction optimization: A color correction algo-
rithm can be optimized for a known LED display spectrum
such that the system error E4 is minimized. This reduces the
unnatural color appearance caused by the low color render-
ing index E2 of the LED display illuminant.

4. Multi-channel LED spectrum optimization: The spectra
of a multi-channel LED light fixture can be mixed such that
the system error E4 is minimized when choosing the color
correction from hypothesis 3. Thus, the same color correc-
tion works for both illuminants simultaneously.



Linear Color Correction and Multi-Channel
Light Source Optimization

Optimizing a color correction algorithm for the LED display
spectrum will negatively affect the color reproduction of com-
monly used light sources, for which a camera is traditionally op-
timized (see mismatch error E5 in Figure 1). However, if the sec-
ondary light source is similar to the display and produces a low
mismatch error, the same color correction will work well under
both spectra. To this end, a multi-channel LED fixture such as the
ARRI Orbiter allows for precise control over its spectral power
distribution (SPD). It emits light from red, green, blue, amber,
cyan, and lime (RGBACL) LEDs which were confirmed to be-
have linearly when configured individually. The resulting spectra
(Figure 2) offer a large selection of broad and narrow bandwidths.

Figure 2: Spectral power distributions of the ARRI Orbiter LEDs
reflected off the middle grey patch of an X-Rite ColorChecker
Classic. The white spectrum is created by configuring all LEDs
to the same intensity percentage.

Enforcing that the color of an illuminant with k channels is
equal to the white color of the display as observed by the cam-
era is done by reducing the degrees of freedom from k to k− 3.
In the following, a 6-channel illuminant is assumed. The 6 el-
ement vector o denotes the factors for each of the LEDs. First,
an illuminant-to-camera prediction matrix A is obtained by plac-
ing the camera’s response to the 6 LEDs into columns. Then, the
camera’s response i to 3 of the LEDs is computed from the last 3
elements of o.

i =

A1,4 A1,5 A1,6
A2,4 A2,5 A2,6
A3,4 A3,5 A3,6

o4
o5
o6

 (13)

The remaining camera response to the first 3 LEDs j is the
difference between the target white response c(E) and the cam-
era’s response i to the last 3 LEDs:

j = c(E)− i = Mdisp→obs

1
1
1

− i (14)

The remaining LED factors o1, o2 and o3 which produce the re-
maining camera response j can now be computed.o1

o2
o3

=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

−1

j (15)

The reduced color correction matrix U and the reduced LED
configuration vector o456 =(o4,o5,o6) are optimized by minimiz-
ing the cost function (16). Figure 3 shows a simplified overview.
The weight ω determines the influence of the system error E4 over
the mismatch error E5. The weight l determines whether the total
system error E4 favors the display or the multi-channel fixture. D
and O are n× 3 matrices containing the reproduced colors after
the color correction under the display and multi-channel illumi-
nants respectively. They are computed from a spectral dataset of
n = 190 real world object reflectances and compared with the the
target values T under a reference illuminant as observed by the
CIE 1931 standard observer.

{U, o456}= argmin
U,o456

√
ω (∆E4)2 +(1−ω)(∆E5)2 (16)

with

∆E4 = l ∆
disp
E4 +(1− l)∆orb

E4

∆
disp
E4 =

n

∑
i=1

√√√√ 3

∑
j=1

(L (D)i, j −L (T ))i, j)2

∆
orb
E4 =

n

∑
i=1

√√√√ 3

∑
j=1

(L (O)i, j −L (T )i, j))2

∆E5 =
n

∑
i=1

√√√√ 3

∑
j=1

(L (D)i, j −L (O)i, j))2

(17)

The resulting matrix U and vector o456 are then expanded
into color correction matrix Mrgb→xyz and multi-channel configu-
ration vector o according to equations (6) and (15).

Root Polynomial Color Correction (RPCC)
To further reduce the system errors, advanced color correc-

tion methods need to be considered. For this purpose, the color
correction using root-polynomial regression by Finlayson et al.
[14] is chosen. This method expands the R, G, and B camera re-
sponses by additional terms, which are best explained by showing
an example:

p̄ = (R , G , B ,
√

RG ,
√

GB ,
√

RB) (18)

The 6 element vector p̄ contains the root polynomials of degree
2. In a similar fashion, the root polynomials of degree 3 can be
defined, resulting in a 13 element vector. A root polynomial color
correction matrix of size 3 × 6 and 3 × 13 respectively can be
found by regression that, when right multiplied by p̄, minimizes
the color errors. The increased degrees of freedom from 9 to 18
or 39 respectively, can produce a better fit than the linear color
correction while maintaining the property of exposure invariance
[14].



Figure 3: The architecture for the optimization of the multichannel configuration o and the color correction Mrgb→xyz. A weighted sum
of the system error E4 and the mismatch error E5 is minimized.

Similar to equation (6), a white point preservation can be
enforced during the optimization:

mlast =
1
pd

(w−U
[
p̄1 p̄2 · · · p̄d−1

]⊺
)

Mrgb→xyz =

U1,1 · · · U1,n mlast,1
U2,1 · · · U2,n mlast,2
U3,1 · · · U3,n mlast,3

 (19)

where U is the reduced RPCC matrix subject to minimization, p̄
is the root polynomial vector of the camera’s response to white
after white balancing (usually (1,1,1)), and w is the target white
point.

Inversion of the Root Polynomial Method
In order to maintain the display calibration, the inverse of

the root polynomial method needs to be applied to the display
signal so that the recorded image remains accurate after the color
correction is performed. While this is simple for the linear color
correction, the RPCC is not as trivial to invert. Because the root
polynomial matrix is not square and reduces a 6 or 13 dimensional
root polynomial to 3 dimensional XY Z coordinates, no exact in-
verse matrix can be found.

Instead, another RPCC matrix M−1
rpcc can be found which ap-

proximates the inverse of the root polynomial method by mini-
mizing:

argmin
M−1

rpcc

n

∑
i=1

√√√√ 3

∑
j=1

(L (T )i, j −L (MrpccP(M−1
rpccP(T )))i, j)2

(20)

where P(M) is the row-wise root polynomial of a matrix and
M−1

rpcc is constrained to map the target white point w from equation
(19) to the camera’s response to white after white balancing. In
other words, the minimization optimizes a pseudo-inverse RPCC
matrix such that it can be applied to a target image followed by
the root polynomial color correction matrix. The resulting color
should look identical to the initial target color. This method is ex-
posure invariant and produces low errors as illustrated in Figure
4. In Table 1, the min, median, and max ∆E of the pseudo-inverse
for a set of real-world objects as observed by the CIE 1931 stan-
dard observer and for colors produced by a ROE Ruby LED wall
as observed by an ARRI ALEXA Mini LF is listed.

Figure 4: CIE 1976 u’v’ chromaticity diagram of pseudo-inverse
RPCC errors

∆E
Dataset mean median max
S190 0.59 0.40 2.60
Display gamut 0.70 0.49 2.99

Table 1: CIELAB color errors of the pseudo-inverse RPCC tar-
geting common colors from a set of 190 object colors (top) and
scattered synthetic targets within the ROE Ruby display gamut
(bottom).

Results
Simulated Results

The minimization of the linear color correction is performed
once and the color reproduction errors are simulated separately
for the LED display illuminant and an optimized spectrum of the
ARRI Orbiter fixture. Figures 6a and 6b show the resulting color
errors. To generate the Figures 5a and 5b, a multispectral image
from the CAVE database is used [15]. The target image is com-
puted using the CIE D65 illuminant and the CIE 1931 standard
observer. The reproduced images inside the squares are illumi-
nated by the LED display spectrum and observed by the ARRI
ALEXA Mini LF mean spectral sensitivity.

The simulations show that the optimized multi-channel illu-
minant spectrum can produce a low mismatch error E5. Overall,
reproduced colors are a significant improvement over the default
matrix but saturated red and green objects are rendered with a
greater error. Skin tones are very close to their target chromatic-
ity and only appear slightly lighter.



(a) Unoptimized linear color cor-
rection (inside squares) vs. target
values (outside of squares).

(b) Optimized linear color correc-
tion (inside squares) vs. target
values (outside of squares).

Figure 5: Simulated colors before (left) and after (right) optimiz-
ing the linear color correction.

While the optimized linear color correction is an improve-
ment over the default matrix, it does not produce a low error for
all object colors. The inherent limitation of the linear color cor-
rection method is that it can only perform linear transformations
like rotation, scale, and shear. Improvements to the saturated reds
would negatively affect the accuracy of saturated orange or less
saturated red objects, causing the optimization to find a compro-
mise with the lowest overall error according to the cost function.

The optimization of the root polynomial method is per-
formed on the same reflectance dataset and the results can be seen
in Figures 6c and 6d. A value of 0.8 is once again chosen for the
error and illuminant weights. There is a significant improvement
in saturated red and green objects over the linear color correction.

Experimental Results and Verification
So far, the color correction and calibration results presented

are all simulations based on radiometric measurements. To con-
firm the efficacy of the methods proposed in this paper, we must
apply them in a real world environment and compare the repro-
duction with the simulated data.

Color correction
The LED wall is configured to display a white image and the

ARRI Orbiter’s RGBACL color channels are set up according to
the optimized vector o from equation (16). A test scene contain-
ing a person with Caucasian skin, an X-Rite ColorChecker Clas-
sic, and various color-critical objects is illuminated from the front
by the display and multi-channel illuminant separately. These ob-
jects are not included in the training data of the color correction.

A visual comparison highlighting areas of interest is shown
in Figure 7. The overall appearance of the colors corrected by the
linear and root polynomial methods is similar, especially when
looking at skin tones. The default LCC matrix (left) exhibits a
strong skin color shift towards magenta-red, which both the LCC
and RPCC correct for. The ColorChecker illuminated by the opti-
mized multichannel spectrum (Fig. 7c bottom) does not match the
targets as well as the display illuminant (top). This is expected,
because the weights chosen during for the optimization favored
the display illuminant.

To quantify the results, a color difference is computed be-
tween the reproduced ColorChecker patches after color correction

(a) Linear color correction illuminated by the LED display

(b) Linear color correction illuminated by the optimized ARRI Orbiter

(c) RPCC of degree 3 illuminated by the LED display

(d) RPCC of degree 3 illuminated by the optimized ARRI Orbiter
Figure 6: Simulated color errors using weights ω = 0.8, l = 0.8



and the target color under a reference illuminant. The color space
CIELAB is chosen, as it is commonly used for color appearance
prediction and has sufficient perceptual uniformity when comput-
ing euclidean distances between color coordinates (∆E) [13]. The
results in Table 2 confirm our previous findings. While most er-
rors are greater than the just-noticeable-distance (JND) threshold
of about 2.3 [16], both the linear and root polynomial method
produce a significantly lower error than the default matrix in ev-
ery metric. The RPCC is able to reduce the mean, median, and
maximum errors better than the LCC and reproduced most Col-
orChecker patches more accurately. Especially outliers (max in
Table 2) were much improved by both methods, with the RPCC
achieving an improvement of ∆E = 15.5 and the LCC reducing
the error by ∆E = 13.5. Figure 8 shows the system error from
the same ColorCheckers patches as u’v’ chromaticity diagrams.
The RPCC is able to reproduce the chromaticities better for most
ColorChecker patches.

Next, the recorded colors are compared with the radiomet-
ric simulations (Table 3). If the simulated conditions perfectly
matched those of the real world test, we would expect an error of
∆E ≈ 0. The remaining differences are most likely caused by in-
accuracies in the ColorChecker spectral reflectance and the cam-
era spectral sensitivity data.

Display Calibration
The display calibration is performed by the inverted conver-

sion matrices used in the color processing of the camera image
and the inverse of the display-to-camera characterization from
equations (11) & (12).
For the linear color correction, the calibration is performed as fol-
lows:

v = EOTF−1(M−1
disp→obs diag(wb)−1M−1

rgb→xyz vXYZ
lin ) (21)

The root polynomial method is calibrated in a similar manner:

v = EOTF−1(M−1
disp→obs diag(wb)−1M−1

rpcc p̄XYZ
lin ) (22)

Where p̄XYZ
lin is the root polynomial of the target color’s XYZ co-

ordinates and M−1
rpcc is the pseudo-inverse RPCC matrix.

Rather than computing the matrix Mdisp→obs from radiomet-
ric functions, we can directly measure it with the camera to im-
prove the accuracy of the matrix. The key insight is that each
column in the matrix represents the camera’s response to the red,
green, and blue spectra respectively.

The results in Figure 9 show that the display calibration is
highly accurate for both the linear and root polynomial method at
any white balance.

Discussion
When it comes to colorimetric accuracy, the root polynomial

method is shown to be superior to the linear method for certain
object colors. Especially saturated red and green objects can be
reproduced more faithfully. However, when judging the overall
appearance of the image, both methods offer a similar improve-
ment over the default matrix. Most objects, including skin, are
not saturated enough to produce a visible improvement with the
RPCC.

display

optimized 3x3 MatrixL[   ] optimized RPCC[   ]

matching Orbiter

default matrix[   ] R

(a) Legend for test configuration indicators

(b) The same image illuminated by the LED display and color corrected
with the default correction - (left), with the linear method L (center), and
with the root polynomial method R (right)

(c) Color checkers illuminated by the display (top) and the optimized ARRI
Orbiter (bottom) using the default color correction (left), the linear matrix
(center), and the RPCC (right)

Figure 7: Isolated results showing ColorCheckers illuminated by
the LED wall and ARRI Orbiter separately

∆E
Description mean median max
Default LCC 3200 K display 11.4 10.1 24.5
RPCC 3200 K display 4.7 4.2 9.0
LCC 3200 K display 5.5 4.3 11.0
RPCC 3200 K Orbiter 6.0 6.1 9.8
LCC 3200 K Orbiter 6.2 6.1 12.4

Table 2: Color reproduction errors comparing the ColorChecker
patches after color correction with simulated target colors illumi-
nated by a 3200 K black-body reference illuminant.

∆E
Description mean median max
RPCC 6025 K display 4.8 4.6 7.8
RPCC 6025 K Orbiter 4.8 4.7 8.2
RPCC 3200 K display 4.3 4.2 8.2
RPCC 3200 K Orbiter 5.2 5.1 10.1

Table 3: Simulation errors comparing the ColorChecker patches
after color correction with the simulated color reproduction based
on radiometric functions.
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(a) Default LCC
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(b) Optimized LCC
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Figure 8: u’v’ chromaticity diagram comparing: Lines: the sim-
ulated ColorChecker target colors illuminated by a 3200 K black-
body reference illuminant as observed by the standard observer.
Markers: the real-world reproduction using the default LCC
(top), the optimized LCC (middle), and the optimized RPCC (bot-
tom) matrix under display illumination.

Comparing the experimental results in Figure 8 with the sim-
ulations in Figure 6c and 6d, it is clear that even the most saturated
red and green ColorChecker patches are not as critical as the sat-
urated objects used in the training data. It can be argued that the
linear method is accurate enough and produces satisfactory results
for most object colors.

Conclusion
In this paper, a display calibration and color correction

method specific to an LED wall virtual production studio is pro-
posed. It is shown that a highly accurate display calibration matrix
can be obtained by measuring the camera’s response to each of the
display’s LEDs.

It is demonstrated that a multi-channel light fixture like the
ARRI Orbiter can be configured in conjunction with the camera’s
color correction to emit a spectrum which produces a low mis-

(a) Measured calibration error using the inverse LCC matrix and
calibrating the display for a white balance of 4000 K

(b) Measured calibration error using the inverse RPCC at the native
display white CCT of 6025 K

Figure 9: Real-world calibration performance

match error to the LED display. The same color correction can be
applied to objects illuminated by either illuminant, resulting in a
consistent and natural presentation.

If the illuminant is carefully chosen, the color correction
method presented in this paper offers a robust and inexpensive
solution before LED displays with more than three primaries be-
come available. Our method can be performed with any multi-
channel light source, as long as its spectral power distribution can
be precisely configured and accurately predicted.
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