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Introduction

Find a most efficient encoding for HDR color imagery co-optimized for

 Efficient Color Encoding &

 Color Volume Mapping (Tone- and Gamut-Mapping)
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Why color volume mapping?

Example HDR Mastering Display

 Rec.2020

 0.005-4000cd/m2

 Dark environment

Example Tablet

 Rec.709

 0.1-400cd/m2

 Bright environment

Example HDR-TV

 ~P3

 0.01-1000cd/m2

 Dark environment
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Requirements to an HDR color encoding

 0.005 – 10,000 cd/m2 dynamic range

 Minimum Rec.2020 gamut – better be able to encode all colors

 Efficient quantization – ‘JND-uniformity’ 

 Static encoding (not content or viewer dependent)

 Low computational complexity (mobile devices)

 Decorrelate the achromatic axis (for color subsampling)

 Hue-linear (for gamut mapping)
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Related work

 “PQ” / SMPTE ST.2084 [1]

 PQ is a luminance encoding 

scheme that quantizes 

according to the minimum step 

beyond the visibility threshold 

according to the Barten’s

contrast sensitivity model [2]

 It follows the peak contrast 

sensitivity for any adaptation 

state
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Model selection

IPT

 Motivated by human perception

 Optimized for hue-linearity

 LMS – cone response
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Model selection

Y’CbCr

 RGB - physically realizable display primaries

 Color differencing scheme
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Typical digital projector primaries

(Barco DP90 & DP90KP dashed)
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ICaCb

 Low computational cost

 Well known from YCbCr & IPT in encoding and color communities

 Already implemented in a large number of devices

9

Selecting a Model
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Selecting a nonlinearity
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ICaCb

 By model definition, the achromatic case is true when  R = G = B

 In consequence the nonlinearity (     ) must be PQ to guarantee an 

optimal encoding along the achromatic axis
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Finding the Model Parameters

ICaCb

 But how to find the best matrix parameters?  

 Optimization

  Need training and test set as well as cost functions
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Data sets: Isoluminance

Test set:

 Comparable to Kindlmann [3] but:

 near Rec.2020 gamut

 HDR (up to ~2000cd/m2)

Verification set:

 Kindlmann 2002 [3]
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Data sets: Hue linearity

Test set:

 Setup as Hung & Berns but:

 near Rec.2020 gamut

 HDR (up to ~2000cd/m2)

Verification set:

 Hung & Berns 1995 [4]
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Data sets: JND uniformity

Test set:

 Step edge pattern on stimuli 

background in dark environment

using method of adjustment

 P3 gamut

 HDR (0.005 - 1000cd/m2)

Verification sets:

 MacAdam 1942 [5] (Observer: PGN)

 Kim 2013 [6]
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Finding the matrix parameters

Isoluminance cost function:

 Mean squared difference in predicted intensity between 

equiluminant patches



Encoding Color Difference Signals for HDR and WCG Imagery 16

Finding the matrix parameters

Hue linearity cost function:
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Finding the matrix parameters

Hue linearity cost function:

 Mean squared distance

of predicted hue to the

mean predicted hue.

(for samples that have

been adjusted to have

the same hue by 

human observers)
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Finding the matrix parameters

JND uniformity cost function:

 Variance in JND-ellipsoid half axes length after SVD
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Results

 ICaCb can be optimized for different purposes by weighting the cost 

function differently:

JND-uniformity                              vs.                                  hue-linearity 
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ICaCb compared to YCbCr

 Better JND uniformity / encoding efficiency (YCbCr JNDs can range 

from half a 10bitCV to more than one hundred 10bitCVs)

 More tonal resolution around pastels

Macadam PGN JND-Ellipsoids (10 times amplified) 
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ICaCb compared to YCbCr

YCbCr ICaCb

 Better JND uniformity / encoding efficiency (YCbCr JNDs can range 

from half a 10bitCV to more than one hundred 10bitCVs)

 More tonal resolution around pastels

 Better hue-linearity

 Better iso-luminance
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ICaCb compared to CIE 1976 u’v’ based encodings

 More perceptually uniform

 More tonal resolution around skin tones

Macadam PGN JND-Ellipsoids (10 times amplified) 
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ICaCb compared to CIE 1976u’v’ based encodings
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ICaCb compared to CIE 1976u’v’ based encodings

 More perceptually uniform

 More tonal resolution around skin tones

 Better hue-linearity

 Smoother modeling of the

Hunt effect
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ICaCb compared to CIE 1976u’v’ based encodings

 More perceptually uniform

 More tonal resolution around skin tones

 Better hue-linearity

 Smoother modeling of the

Hunt effect

 Less computations needed (no division)
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Further research

 Optimization sometimes has to be run multiple times to find global 

minima when initializing x0 with random values from the full range of 

possible values.

 Example local minima:

 Can be easily excluded

by running optimization

multiple times
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Further research

 Test set data was small

 N = 2 to 30 depending on the data set.

 Acquisition methods for the test sets could be enhanced

 Method of adjustment for JNDs suboptimal

 Running the optimization on the verification set instead of the test set 

resulted in a stronger compression of the blue-yellow axis



Encoding Color Difference Signals for HDR and WCG Imagery 30

Conclusion

 We present a new HDR color encoding that performs better in coding 

efficiency compared to current approaches:

 Y’CbCr PQ

 Y’CbCr BBC

 Y’’u’’v’’

 Our color space is co-optimized for encoding efficiency and color 

volume mapping (Tone Mapping & Gamut Mapping) and is therefore 

applicable for HDR and WCG color encoding in TV and cinema 

szenarios
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