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NHK Nippon Hōsō Kyōkai. Japan’s national public broadcasting organiza-

tion.

OLED Organic Light-Emitting Diode.

OpenEXR Floating point image file format introduced by Industrial Light and

Magic.

PU Perceptually Uniform transfer function.

PQ Perceptual Quantizer transfer function.

Rec.2100 HLG Color space using ITU recommendation 2100 primaries, HLG nonlin-

earity and Y′CBCR color differencing.

Rec.2100 PQ Color space using ITU recommendation 2100 primaries, PQ nonlin-

earity and Y′CBCR color differencing.

RGB Color space spanned by additive mixture of Red, Green and Blue

light.

RGBE File format for storing RGB color information logarithmically using a

common Exponent.



18 List of Abbreviations

SDR Standard Dynamic Range (used as opposite to HDR).

sRGB Standard Red, Green and Blue color space.

SVD Singular Value Decomposition.

VDP Visual Difference Predictor. A metric for visual differences in images.

WCG Wide Color Gamut.

Y′CBCR A color differencing scheme starting from nonlinear encoded RGB.

Y′′u′′v′′ An HDR and WCG color encoding based on PQ nonlinearity and CIE

1976 u′v′ chromaticity.



List of Symbols

R, G, B Quantities of red, green and blue light that span a color space by addi-

tive mixture.

f� Nonlinear encoding function. The subscript refers to the corresponding

standard for nonlinear encoding. For example fPQ encodes according to

SMPTE ST.2084/PQ [184] transfer function.

�′ A superscript apostrophe added to a color channel denotes that this

color is encoded nonlinearly with a gamma function. For example R′

refers to a red color channel being gamma coded while R denotes a

linear encoding of the red color channel.

�PQ,�HLG If the nonlinear encoding is not a pure gamma function or a gamma

plus linear slope function, the respective nonlinear encoding is added as

superscript. For example RPQ refers to a PQ encoded red color channel.

Y Luminance in cd/m2.

Y ′, I Luma, Intensity calculated from nonlinear coded R′G′B′ and therefore

featuring non-constant luminance, not fully decorrelating luminance

and chroma.

19



20 List of Symbols

�709,�2020 RGB primaries are denoted as subscript, for example R2020 refers to an

amount of red light having the chromaticity coordinates specified in

Rec.2020 [92].

CB, CR, Character subscripts specify whether a chroma channel is the blue-

yellow color difference channel (CB) or the red-green color difference

channel (CR).

J Cost functions use the letter J . As an example, the cost function on JND

ellipsoid uniformity is named JJN D.

w The scalar weights for the cost functions use the letter w. For example

the weighting of JND-uniformity is named wJN D.



Abstract

This thesis introduces a cinematic High Dynamic Range (HDR) and Wide Color Gamut

(WCG) data set and proposes computational models and methods for encoding HDR

and WCG video imagery.

New HDR and WCG image processing algorithms, compression codecs and displays

need high quality video sequences for objective and visual evaluation. Hence, a new

HDR and WCG video data set containing scenic and documentary scenes with a dy-

namic range of up to 18 photographic stops is introduced. The individual scenes are

designed to pose challenges to tone mapping operators, gamut mapping algorithms,

compression codecs and HDR and WCG display devices. The scenes are staged us-

ing professional film lighting, make-up and set design. To achieve a cinematic image

appearance, digital motion picture cameras with ‘Super-35 mm’ size sensors are used.

The extended information of HDR and WCG video requires new signal encodings, and

improved color spaces compared to standard dynamic range video encodings. Due

to the increasing variance in display capabilities, it is desirable to have a color signal

encoding that is not only suitable for efficient quantization but also for tone mapping

and gamut mapping. While methods for high dynamic range luminance encoding

have been introduced, a similar encoding scheme for color difference signals is not

yet available. Hence, two novel color space representations are introduced allowing

for efficient encoding of HDR and WCG color difference signals as well as tone map-

ping and gamut mapping applications. These encodings are compared against existing

state-of-the-art HDR and WCG color spaces. The introduced encoding schemes allow

21



22 Abstract

visually lossless quantization of any HDR and WCG video using three color channels

with 12 bits of tonal resolution each.

While quantization of HDR video at 12 bits of tonal resolution is the goal, current

mainstream file formats, video interfaces and compression codecs can often only han-

dle lower bit-depths. To leverage this existing infrastructure for the transmission and

storage of HDR video, a new content aware baseband quantization scheme is intro-

duced. This quantizer exploits image characteristics like noise and texture to estimate

the needed tonal resolution for visually lossless quantization per luminance range and

video frame. The proposed method allows for quantization of HDR video with a tonal

resolution of 10 bits without introducing visually perceivable differences and requires

a lower computing power compared to current HDR visual difference metrics.



Zusammenfassung (German Abstract)

In dieser Dissertation wird ein szenischer Bewegtbilddatensatz mit erweitertem Dy-

namikumfang (High Dynamic Range, HDR) und großem Farbumfang (Wide Color

Gamut, WCG) eingeführt und es werden Modelle zur Kodierung von HDR und WCG

Bildern vorgestellt.

Die objektive und visuelle Evaluation neuer HDR und WCG Bildverarbeitungsalgorith-

men, Kompressionsverfahren und Bildwiedergabegeräte erfordert einen Referenzda-

tensatz hoher Qualität. Daher wird ein neuer HDR- und WCG-Video-Datensatz mit

einem Dynamikumfang von bis zu 18 fotografischen Blenden eingeführt. Er enthält

inszenierte und dokumentarische Szenen. Die einzelnen Szenen sind konzipiert um

eine Herausforderung für Tone Mapping Operatoren, Gamut Mapping Algorithmen,

Kompressionscodecs und HDR und WCG Bildanzeigegeräte darzustellen. Die Szenen

sind mit professionellem Licht, Maske und Filmausstattung aufgenommen. Um einen

cinematischen Bildeindruck zu erhalten, werden digitale Filmkameras mit ‘Super-35

mm’ Sensorgröße verwendet.

Der zusätzliche Informationsgehalt von HDR- und WCG-Videosignalen erfordert im

Vergleich zu Signalen mit herkömmlichem Dynamikumfang eine neue und effizien-

tere Signalkodierung. Ein Farbraum für HDR und WCG Video sollte nicht nur effi-

zient quantisieren, sondern wegen der unterschiedlichen Monitoreigenschaften auf

der Empfängerseite auch für die Dynamik- und Farbumfangsanpassung geeignet sein.

Bisher wurden Methoden für die Quantisierung von HDR Luminanzsignalen vorge-

schlagen. Es fehlt jedoch noch ein entsprechendes Modell für Farbdifferenzsignale.
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24 Zusammenfassung (German Abstract)

Es werden daher zwei neue Farbräume eingeführt, die sich sowohl für die effizien-

te Kodierung von HDR und WCG Signalen als auch für die Dynamik- und Farbum-

fangsanpassung eignen. Diese Farbräume werden mit existierenden HDR und WCG

Farbsignalkodierungen des aktuellen Stands der Technik verglichen. Die vorgestellten

Kodierungsschemata erlauben es, HDR- und WCG-Video mittels drei Farbkanälen mit

12 Bits tonaler Auflösung zu quantisieren, ohne dass Quantisierungsartefakte sichtbar

werden.

Während die Speicherung und Übertragung von HDR und WCG Video mit 12-Bit

Farbtiefe pro Kanal angestrebt wird, unterstützen aktuell verbreitete Dateiformate,

Videoschnittstellen und Kompressionscodecs oft nur niedrigere Bittiefen. Um diese

existierende Infrastruktur für die HDR Videoübertragung und -speicherung nutzen zu

können, wird ein neues bildinhaltsabhängiges Quantisierungsschema eingeführt. Die-

se Quantisierungsmethode nutzt Bildeigenschaften wie Rauschen und Textur um die

benötigte tonale Auflösung für die visuell verlustlose Quantisierung zu schätzen. Die

vorgestellte Methode erlaubt es HDR Video mit einer Bittiefe von 10 Bits ohne sicht-

bare Unterschiede zum Original zu quantisieren und kommt mit weniger Rechenkraft

im Vergleich zu aktuellen HDR Bilddifferenzmetriken aus.
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Chapter 1
Introduction

Audiovisual media plays an important role in communication and culture. Watching

movies or sports together, playing computer games, enjoying virtual reality or perform-

ing personal video communication, in all these domains, extending image quality is

requested to support story-telling, immersion and transport of emotions.

Beyond increasing spatial and temporal resolution, image quality can be increased

by capturing, encoding and rendering a higher dynamic range and a wider gamut of

colors per pixel. While the fundamental research on High Dynamic Range (HDR) and

Wide Color Gamut (WCG) image acquisition, manipulation, display and distribution

was carried out in the late 1990s and 2000s, the recent interest in HDR in cinema,

television, gaming and virtual reality has revealed new research questions specifically

in efficient HDR and WCG image encoding and storage.

Figure 1.1 illustrates the image reproduction pipeline from acquisition and image syn-

thesis to display. This imaging chain is further detailed in Section 1.1.

Image 
Synthesis

Image 
Acquisition Encoding

and Storage Distribution

Tone-
Mapping 

and Gamut 
Mapping

Display

Color 
Rendering 
and Artistic 
Manipulation

Figure 1.1: The HDR and WCG distribution chain from image acquisition and
image synthesis to presentation.
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28 Chapter 1. Introduction

1.1 Open Challenges in HDR and WCG Imaging

While there exists an extensive literature on HDR image acquisition techniques [44,

100, 189] and HDR image synthesis algorithms [158, 199], as of 2014, there was no

cinematic HDR video set available. Reference video content is especially important to

evaluate the performance of image manipulation and display technologies.

For encoding and storage of HDR and WCG content it is important to use the most

efficient quantization scheme to reduce storage space and bandwidth. Optimal quan-

tization is especially crucial when using existing 10-bit infrastructure for HDR and

WCG content storage and distribution. Most prior contributions focus on the most

efficient HDR grayscale encoding [10, 140, 151]. Existing HDR and WCG color en-

codings [17, 115, 161] are not yet fully optimized for efficient quantization and for

further needs in downstream distribution like tone mapping and gamut mapping.

Video distribution also calls for efficient quantization. In addition, luminance and

chroma signals have to be decorrelated for distribution to enable color subsampling

and efficient compression. Future HDR and WCG signals should also be distributed in

a hue linear color space to simplify gamut mapping in display devices. These needs

align with the requirements for video encoding and storage as specified above.

Tone mapping and gamut mapping has to be applied to distributed HDR images,

depending on the display capabilities and ambient conditions. While there is a vast

literature on tone mapping [7, 51, 52, 63, 117, 133, 163, 164], gamut mapping for

video display [68, 134] has come into focus upon the time of writing this thesis. Most

scientific tone mapping operators are based on automatic image analysis or a small

number of parameters. In the entertainment media context it would be desirable

to allow artists to have the full creative control over the tone mapping and gamut

mapping process to preserve artistic intent in distribution.

In display technology, solutions for HDR and WCG display exist for both television

and cinema: Current HDR displays are either based on Liquid Crystal Display (LCD)

panels using a dual-modulation backlight [174] or based on Organic Light-Emitting

Diode (OLED) technology. Cinema projectors employ laser light sources to achieve a

wide color gamut. HDR for cinema was introduced in 2014 using a yet undisclosed
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technology [47]. The biggest challenge for both television and cinema is to display a

high peak luminance, while staying within a reasonable power budget.

1.2 Research Questions

The main research question of this thesis is how to efficiently encode high dynamic

range and wide color gamut video.

Because in 2012 there was no high quality HDR and WCG video data set available,

first, a reference data set has to be acquired. Therefore, the properties needed for

making the video data set useful for the evaluation of new display technologies, color

spaces, compression codecs and color rendering algorithms have to be found. Subse-

quently the video data set has to be acquired, edited and all processing steps have to

be documented.

Storing such HDR and WCG video imagery with legacy formats like classic Y′CBCR

color difference encoding yields in low quantization efficiency. Thus, the most effi-

cient basis for encoding HDR and WCG imagery has to be found. This includes

finding a suitable color difference scheme, to be able to use color subsampling.

Optimizing such an encoding requires the acquisition of datasets on minimum dis-

criminable differences, hue linearity and isoluminance that span the full visible gamut

and feature a high dynamic range.

Given there are efficient encodings for HDR and WCG video data, one of the chal-

lenges is using these new encodings on legacy infrastructure. This includes storage

formats, transmission interfaces and compression codecs. Legacy infrastructure, orig-

inally designed for standard dynamic range video, often features a lower bit-depth

than needed for a static HDR and WCG video encoding. Thus, it becomes important

to determine how image properties affect the minimum needed amount of code val-

ues for quantization, and find how this can be exploited to reduce tonal resolution

needs for HDR and WCG imagery by means of a content aware encoding.
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1.3 Outline and Contributions

The aim of this thesis is to find enhanced quantization schemes for efficient HDR and

WCG image storage and distribution. The models and methods described can be ap-

plied to all fields that need precise and efficient HDR and WCG color and texture

representation like television and cinema, but also in virtual reality, medical imaging

and product display.

The following Chapter 2 is not a contribution of this thesis as it summarizes the his-

toric contributions on perceptually uniform luminance and color representation. It

also gives an overview of the state-of-the-art proposals for encoding HDR and WCG

video.

The original work starts with introducing a novel HDR and WCG video data set in

Chapter 3. A reference video dataset is needed to be able to verify the quantization

schemes introduced in the following chapters. This data set is specifically designed for

the evaluation of HDR and WCG video encoding and processing algorithms as well as

HDR displays. Chapter 3 is based on the paper describing the HdM-HDR-2014 video

data set [71] where Stefan Grandinetti, Simon Walter and Jascha Vick directed the

creative cinematography and lighting during the image acquisition. Heike Quosdorf

operated the grading system and Stefan Grandinetti contributed to the aesthetic deci-

sions in postproduction. The author of this thesis selected the mirror rig design used

to acquire the content, determined the technical and visual requirements for the con-

tent and deduced the scenes based on these requirements. The author of this thesis

also controlled the technical parameters during acquisition, designed the data-flow

and processed the video data set from raw camera output to the reconstructed scene

radiance and the color graded version of the video data set.

Chapter 4 presents two new HDR and WCG color encodings, ICACB and ICTCP.

These color encodings are co-optimized for coding efficiency, decorrelation of luma

and chroma and for performing tone mapping and gamut mapping in these spaces.

Chapter 4 is mainly based on the paper that describes the tuning of the ICACB color

space from psychophysics datasets [73] and also presents the ICTCP encoding which

is based on modified LMS cone fundamentals, as originally introduced by patent

PCT/US2015/051964 [69]. Co-author Robin Atkins first proposed to exchange IPT’s
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original gamma with the Perceptual Quantizer curve, which was incorporated in both

models. Co-authors Jaclyn Pytlarz and Timo Kunkel designed the isoluminance study,

and co-author Jaclyn Pytlarz conducted the isoluminance study. Co-authors Jaclyn

Pytlarz and Robin Atkins introduced the skintone rotation and the scaling of the P

channel to ICTCP. The author of this thesis designed and conducted the studies on just

noticeable differences and hue linearity that are used to tune both color spaces. He

also designed and carried out the optimization process and first introduced the con-

cept of crosstalk in linear Long, Medium and Short wavelength (LMS) cone response

domain to increase perceptual uniformity of HDR and WCG color representations.

To be able to employ legacy infrastructure, tonal resolution needs in HDR and WCG

image encoding have to be reduced beyond the static ICACB and ICTCP encodings.

Therefore in Chapter 5 a Content Aware Quantization scheme (CAQ) is introduced.

This dynamic quantization scheme exploits the image-inherent masking properties

of noise and texture for quantizing any content at reduced bit-depths, for example

10 bits. Chapter 5 is based on the paper describing the CAQ algorithm [75] and

patent PCT/US2016/020230 [74] that generalizes the concept of content aware quan-

tization. The CAQ method is inspired by co-author Scott Daly’s Visual Difference Pre-

dictor [38]. The author of this thesis designed the CAQ algorithm and performed the

studies on masking of quantization artifacts by noise and texture on synthetic gradi-

ents and real-world HDR and WCG video imagery.

This thesis closes by looking towards future research needed to close the remaining

gaps in the HDR and WCG imaging pipeline in Chapter 6.

1.4 Reused and Copyrighted Material

Material from the following SPIE & IS&T copyrighted paper is partly reused with kind

permission of SPIE & IS&T by following the author copyright transfer agreement:

• [71] Copyright 2014 Society of Photo-Optical Engineers and IS&T – The Soci-

ety for Imaging Science and Technology. Reprinted, with permission, from: Jan

Froehlich, Stefan Grandinetti, Bernd Eberhardt, Simon Walter, Andreas Schilling
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and Harald Brendel. Creating Cinematic Wide Gamut HDR-Video for the

Evaluation of Tone Mapping Operators and HDR-displays. IS&T/SPIE Elec-

tronic Imaging, 90230X-90230X-10. Society for Imaging Science and Technology

and International Society for Optics and Photonics, March 2014.

Material from the following IS&T copyrighted paper is partly reused with kind per-

mission of IS&T by following the author copyright agreement:

• [73] Copyright 2015 IS&T – The Society for Imaging Science and Technology.

Reprinted, with permission, from: Jan Froehlich, Timo Kunkel, Robin Atkins,

Jaclyn Pytlarz, Scott Daly, Andreas Schilling and Bernd Eberhardt. Encoding

Color Difference Signals for High Dynamic Range and Wide Gamut Imagery.

Color and Imaging Conference, 23: 240–247. Society for Imaging Science and

Technology, October 2015.

Material from the following IEEE copyrighted paper is partly reused with kind permis-

sion of IEEE by following the agreement for Thesis/Dissertation reuse:

• [75] Copyright 2016 IEEE. Reprinted, with permission, from: Jan Froehlich,

Guan-Ming Su, Scott Daly, Andreas Schilling and Bernd Eberhardt. Content

Aware Quantization: Requantization of High Dynamic Range Baseband Sig-

nals Based on Visual Masking by Noise and Texture. International Conference

on Image Processing (ICIP), 884–888 IEEE, September 2016.



Chapter 2
Background and Related Work

This chapter provides an overview of models for luminance and color encoding. It

starts by describing the early research on achromatic contrast sensitivity by Bouguer,

Masson, Weber, Fechner, Plateau and Stevens. These spatial frequency independent

models were later extended by Schade and Barten to include a dependency on the

spatial frequency of the stimulus resulting in Contrast Sensitivity Functions (CSF).

Furthermore, currently used luminance encodings for Standard Dynamic Range (SDR)

and HDR video are summarized.

In the mid section of this chapter the focus switches from luminance to color. First

Wright’s and MacAdam’s fundamental studies on color discriminability and the de-

rived chromaticity scales are summarized. Furthermore, current SDR color difference

encodings as well as the early color appearance models are described.

The last section of this chapter gives an overview of the current state-of-the-art lumi-

nance and color encodings that are specifically tailored for efficient encoding of HDR

and WCG video imagery. These encodings build upon the concepts introduced in the

beginning of this chapter.
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2.1 Early Research on Perceptual Uniformity and Con-

trast Sensitivity

One of the earliest experiments to find the smallest luminance steps the human visual

system can discriminate were done by Bouguer, one of the originators of the domain of

photometry. Bouguer discovered a logarithmic relationship between physical stimuli

and minimum discriminable steps [21, 22]. His experimental setup was as follows:

he illuminated a white paper by candle light, added a second candle and a stick that

cast a shadow by partly covering the second candle. By moving the second candle

further away he could reduce the light added to the base stimulus from the first candle.

Independent of the base luminance, the difference between the area where the second

candle adds light and the area where the stick covered the second candle could just

be discriminated if the distance of the second candle to the paper was 8 times the

distance of the first candle to the paper. Thus, he concluded the minimum fraction

that could be detected was 1
64 of the original stimulus. This fraction is often called

Just Noticable Difference (JND).

Roughly a century later, Masson [135] tried to reproduce Bouguer’s results with a

slightly different apparatus. He darkened a defined part of a disk that rotated with

200 frames per second. Having this speed, the black part of the disk and the white

parts melt together temporally. From his observations on contrast visibility using the

rotating disks he draws three conclusions:

• The sensitivity of each individual’s eye does only deviate minimally over the

course of multiple days.

• Every subject could see differences of 1
60 in luminance whereas some could detect

up to 1
120 .

• When written as a fraction of the original stimulus, the eye’s contrast sensitivity

is independent of the intensity of the original stimulus or the color of the light

as long as the intensity is bright enough to read text clearly.

Bouguer’s and Massons’s photometry paved the way for the field of psychophysics,

a term coined by Fechner. Psychophysics aims to define the relationship between a

physical stimulus and the perceived response in human perception. Fechner refers to

Bouguer and Masson in his fundamental book on human perception [64]. His goal is to
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derive psychophysical scales for physical stimuli like temperature, tactile sensation and

luminance. He starts from ‘Weber’s law’ named after his teacher’s, Weber’s research on

tactile sensations [202]. Weber’s law states that the minimum discriminable difference

is a constant fraction c of the change in physical stimulus ∆R divided by the original

physical stimulus R:

c =
∆R
R

(2.1)

Fechner further integrates Weber’s law to derive a psychophysical scale γ, where β is

the physical stimulus and b is the lower threshold for detection:

γ= k(logβ − log b) = k log
β

b
(2.2)

For human vision Fechner reports values around k = 100 from his own experiments

that follow Bouguer’s and Massons’s setups. Fechner admits that the constant fraction

model does not hold for either very dark stimuli or very bright stimuli like sunspots,

which are visible through a smoked glass, but become invisible when looking directly

at the sun.

A different model for creating a perceptually uniform scale was proposed by

Plateau [159, 160] in 1872 when he published the results of his experiments per-

formed already in 1830. He found the psychophysical scale S not to be a logarithm

of the original stimulus but to roughly follow a power law, expressed as a constant A

times the physical stimulus E raised by the power of d:

S = AEd (2.3)

This function later got known as ‘Stevens’ Law’ [187] named after Stevens, who

brought Plateau’s findings to a wider audience. The question if lightness perception

follows a logarithmic function or power law is still a current research topic [28]. For

the discrimination of small differences, there is agreement that a curve of additive

JND steps roughly follows a power function for dark stimuli limited through photon

shot noise and then turns to a logarithmic relationship in photopic viewing conditions

before the curve levels off at very high luminance [14, 140]. The perceptually uni-

form encoding curves described in Section 2.3.3 will all model this behavior and the

masking phenomenon of photon shot noise will be further discussed in Chapter 5.
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2.2 Spatial Contrast Sensitivity

All approaches for determining JNDs mentioned in Chapter 2.1 use step edges for dis-

crimination. Schade began to measure visual contrast sensitivity as a function of spa-

tial frequency for modeling human vision by means of a television like system [172].
He found that the minimum discriminable luminance difference is heavily dependent

upon spatial frequency. Figure 2.1 illustrates this phenomenon at a glance. Moving

from top to bottom, the sine pattern’s amplitude is constantly reduced. On the hor-

izontal axis different spatial frequencies from low frequencies at the left to higher

frequencies at the right are rendered all with the same amplitude for one vertical

position. For a typical reading distance only the mid frequencies have a contrast visi-

bility around 0.1 in CIE L*a*b* L*. Contrast sensitivity of the human visual system is

reduced for higher and lower spatial frequencies.
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Figure 2.1: Visualization of contrast sensitivity depending on spatial
frequency. Preferably watch this illustration on a high spatial and tonal re-
solution sRGB [87] screen.

In the 1990s Barten developed a formula to predict the contrast sensitivity function of

the human visual system based on a physical model of the eye [13, 14, 15]. Barten’s

model allows one to predict contrast detection for a very wide range of stimuli and

viewing environments. He showed that his model aligns well with a large number

of studies and data sets [14]. It was used to obtain the Perceptual Quantizer func-

tion (PQ) [184] referenced in Section 2.3.3.3, which is used as the nonlinearity in the

HDR and WCG video encoding models introduced in Chapter 4.
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2.3 Luminance Encodings

Following the findings from Chapters 2.1 and 2.2 that luminance perception is highly

nonlinear, it becomes clear that a linear digital encoding of luminance would not be

very efficient. Table 2.1 shows an example for the inefficiency of linear luminance cod-

ing. Assuming a 1% Weber-Fechner fraction as detection limit, a 10-bit encoding can

only encode three f-stops of dynamic range without introducing quantization artifacts.

Even a 16-bit linear encoding is only visually transparent for the top nine f-stops. For

the tenth f-stop below peak white the step-size in quantization becomes more than

1%, thus limiting the visually transparent dynamic range for this encoding to about

900:1 (65353/70). At the same time, the first stop below peak white gets encoded

with 32768 code values, whereas 70 code values would be enough assuming a 1%

detection limit. This is an over-quantization of more than two orders of magnitude

for the brightest f-stop and therefore very inefficient. Hence, different nonlinear trans-

fer functions for luminance have been proposed and are summarized in the following

sections.

Table 2.1: Illustration of the inefficiency of linear luminance encoding. Fech-
ner refers to the number of code values needed assuming a detection limit of
1% linear luminance. 10 bits and 16 bits show the number of code values
spent to quantize each f-stop when using a linear integer encoding.

Code values per f-stop
F-Stop 1 2 3 4 5 6 7 8 9 10
Fechner 70 70 70 70 70 70 70 70 70 70
10-bit 512 256 128 64 32 16 8 4 2 1
16-bit 32768 16384 8192 4096 2048 1023 512 256 128 64

Traditional standard dynamic range Rec.709 gamma can be thought as following

Stevens Law. The logarithmic quantization function of LogLuv can be thought of as

an implementation of Weber’s and Fechner’s research. The most recent HDR quan-

tization schemes like Digital Imaging and Communications in Medicine (DICOM),

Perceptually Uniform (PU), Perceptual Quantizer and Hybrid Log Gamma (HLG) build

upon Barten’s research and try to bridge both theories, Stevens’ power law and the

Weber-Fechner logarithm by roughly following a gamma function near black and then

changing into a more logarithmic encoding for brighter stimuli.
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2.3.1 Standard Dynamic Range Encodings

Most image encodings for standard dynamic range imagery use a gamma curve to be

able to encode luminance efficiently. The gamma curve was originally given by the

native cathode ray tube nonlinearity and follows ‘Stevens Law’ [187]. The sRGB [87]
and Rec.709 [94] transfer functions both have a linear toe to reduce the amplitude

of high frequency photon shot noise and sensor read noise near black as it typically

appears in camera captured images:

fsRGB(x) =







1.055x
1

2.4 − 0.055, if 1≥ x ≥ 0.0031308

12.92x , if 0.0031308> x ≥ 0
(2.4)

f709(x) =







1.099x0.45 − 0.099, if 1≥ x ≥ 0.018

4.5x , if 0.018> x ≥ 0
(2.5)

Instead of limiting quantization towards black by a linear toe, ITU Rec.1886 [90]
introduces a small negative offset b to again limit quantization near black. The scalar

factor a serves to normalize the signal to its intended range of zero to one again.

f1886(x) =max

�

� x
a

�
1

2.4

− b, 0

�

(2.6)

Digital cinema [181] uses a pure gamma of 2.6 to increase the tonal resolution near

black.

fDCI(x) = x1/2.6 (2.7)

The higher tonal resolution near black is needed in digital cinema because the dark

viewing environment leads to darker adaptation and therefore a higher tonal resolu-

tion of the human visual system in cinema environments. The higher amplification

of noise near black for camera captured content is acceptable because the compres-

sion bit-rates of digital cinema [45] are higher compared to television applications.

Tonal resolution in digital cinema is 12 bits opposed to 8 and 10 bits in broadcasting.

Thus, even smooth and noiseless gradients like they appear in broadcast graphics and

computer generated content can be quantized at 12-bit without introducing visible

quantization artifacts in typical cinema environments [36].
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2.3.2 HDR Luminance Encoding in Video Acquisition

Digital image sensor output from modern sensors is typically delivered in a linear

encoding by the analog-to-digital converters. Hence, as illustrated in Table 2.1, the

relative tonal resolution varies greatly over luminance.

Following Fechner’s logarithmic model of vision, but deriving a minimum contrast sen-

sitivity of 1
300 from Barten’s spatial contrast sensitivity model introduced in Section 2.2

instead of Fechner’s 1% findings, 210 code values per f-stop are sufficient for the most

critical visual imaging use cases. Thus, it is common to limit raw camera files to a

certain number of code values per f-stop via a quantization lookup table. This esti-

mate assumes a limited contrast manipulation in later processing steps. The number

of code values per f-stop is typically reduced for the lower part of the quantization

curve because of the rapid decrease of tonal resolution from the sensor’s linear analog

to digital converter. In practice, the reduced tonal resolution from the analog digital

conversion for the dark areas is acceptable because of the masking of quantization

artifacts by photon shot noise as further discussed in Chapter 5.

A typical example for a logarithmic quantization scheme is the ‘LogC’ curve [24]. At

12-bit tonal resolution ‘LogC’ limits the quantization to roughly 256 steps per stop

for the midtones and highlights. In the shadows it mimics the toe of analog film

comparable to scanned motion picture negative [102]:

fLogC(x) =







c log10(ax + b) + d, if 1≥ x > 0.010591

ex + f , if 0.010591≥ x ≥ 0
(2.8)

a = 5.555556 b = 0.052272 c = 0.247190

d = 0.385537 e = 5.367655 f = 0.092809

Lots of similar pseudo-logarithmic encoding functions are available. Most roughly

follow the original Cineon [102] curve. A good place to search for nonlinear encodings

of individual camera manufacturers is the ‘Colour-Science’ project [130].
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2.3.3 HDR Luminance Encoding in Video Distribution

In high dynamic range imaging the nonlinear encoding becomes more crucial com-

pared to standard dynamic range because HDR allows for a wide range of adaptation

states for the human visual system. Viewers can be dark adapted in a cinema after

having watched a couple of dark scenes or be adapted to very bright outdoor view-

ing environments for mobile devices showing bright content in sunlight. Hence, new

transfer functions have to be developed for these new use cases. The first HDR trans-
fer functions were standardized in the domain of medical imaging where analog high

density films like those used in x-ray had already offered HDR display before the in-

troduction of digital imagery.

2.3.3.1 DICOM Grayscale Standard Display Function

In 1979 Briggs proposed to derive the best display quantization by adding up

JNDs [26]. Johnston et al. advised to apply a similar method to increase interoper-

ability between different medical display devices [98]. Blume et al. [81] extended this

approach to be based on Barten’s contrast sensitivity function instead of JND visibility

experiments [13, 15, 81]. This led to the standardization of the DICOM ‘Grayscale

Standard Display Function’ [150] with the following functional form fitted to the nu-

merical JND data:

fDICOM(x) =A+ B log10(x) + C log10(x)
2 + D log10(x)

3 + E log10(x)
4+ (2.9)

F log10(x)
5 + G log10(x)

6 +H log10(x)
7 + I log10(x)

8

A= 71.498068 B = 94.593053 C = 41.912053

D = 9.8247004 E = 0.28175407 F = − 1.1878455

G = − 0.180143493 H = 0.14710899 I = − 0.017046845

The DICOM encoding curve is calculated by adding up the smallest discriminable
steps at a frequency of 4 cycles per degree according to the Barten model. Figure 2.2

illustrates this approach. While the contrast sensitivity at 1000 cd/m2 is between 1
200

and 1
300 , stimuli at 0.01 cd/m2 get encoded with a relative step size of about 1

7 . How-

ever, at 0.01 cd/m2 the human visual system features a higher contrast sensitivity of

around 1
20 at lower frequencies below 1 cycle per degree.
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Figure 2.2: Derivation of the DICOM, PU and PQ luminance transfer functions
from Barten’s CSF model. Adapted from [140].

2.3.3.2 PU Transfer Function

In 2006, Mantiuk et al. proposed to encode HDR imagery by using the DICOM

curve [132]. Later, Aydın et al. extended the DICOM approach by following the fre-

quencies with the highest respective peak contrast sensitivity [10] in Barten’s CSF

model. The resulting Perceptually Uniform (PU) curve is designed to prevent visible

quantization artifacts at any spatial frequency and any luminance level. The derivation

of PU is illustrated in Figure 2.2. While DICOM always samples the smallest detectable

contrast step at 4 cycles per degree, PU follows the peak of contrast sensitivity to lower

frequencies for darker luminance values.

2.3.3.3 PQ Transfer Function

The PU curve is supplied as a lookup table [10, 11]. For interchange and application

in arbitrary precision, it is desirable to have a functional approximation available for

HDR encoding. In consequence, Miller et al. fitted a function to the highest contrast

sensitivity per luminance range of Barten’s spatial contrast sensitivity function [140,

151]. This curve is called Perceptual Quantizer (PQ) and is standardized by SMPTE

as the standard quantization curve for HDR video distribution in ST.2084 [184].
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The functional form of the PQ curve loosely follows the Naka-Rushton equation [146].
x is the linear input in candela per square meter and fPQ(x) provides the nonlinear

encoded signal. n, m and c1, c2, c3 are constants derived from fitting the Naka-Rushton

equation to the numerical JND data:

fPQ(x) =

�

c1 + c2 ×
�

x
10000

�n

1+ c3 ×
�

x
10000

�n

�m

(2.10)

n= 2610/214 m= 2523/25 c1 = 3424/212 c2 = 2413/27 c3 = 2392/27

Figure 2.3 shows the DICOM nonlinearity, PU, PQ and sRGB in comparison. It can

be seen that the PU authors have decided to clip all values below about 10−2 to stay

near the sRGB curve for the 0-100 cd/m2 range while PQ is tailored towards current

generation displays that often feature darker black values below 10−2. These dark

values become especially important in HDR cinema environments. As an example,

night scenes are typically color-graded much darker for cinema compared to television

because in cinema environments the projected image does not have to compete with

potential stray-light and glare from indoor light sources and windows like they are

typical in private homes.
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Figure 2.3: DICOM, PU, PQ and sRGB luminance transfer functions com-
pared.
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2.3.3.4 HLG Transfer Function

When being faced with the challenge to carry out live broadcasting using the PQ trans-

fer function the Japan Broadcasting Corporation (NHK) and the British Broadcasting

Corporation (BBC) identified several practical disadvantages:

• When PQ-encoded signals are viewed on legacy SDR monitors, they look low

contrast, desaturated and the dark to mid-tones are elevated.

• The high tonal resolution of PQ in the dark areas results in an amplification

of camera noise for compression. Hence, non-PQ-aware codecs like H.264 do

not assign enough bits to bright areas compared to the dark areas resulting in a

reduced compression efficiency.

• The absolute encoding of PQ requires explicit tone mapping on the receiver side

for those displays that are not capable of displaying the exact peak luminance

of the content.

To solve these problems, the NHK and BBC introduced a new transfer function that fol-

lows the findings of both Stevens and Fechner [8]. Stevens’ law is applied to dark stim-

uli where the minimum discriminable steps in human vision roughly follow a power

function. For brighter colors, a logarithm is applied as postulated by Fechner. Hence,

the HLG nonlinearity is defined piecewise with a gamma of 0.5 for values below dif-

fuse white and a natural logarithm for encoding colors above diffuse white as depicted

in Equation (2.11). The linear scene luminance x is normalized to a range of zero to

one. Diffuse white is intended to be rendered at 1
12 of the peak white of the linear in-

put signal resulting in about 3.5 f-stops of dynamic range for specular highlights and

self luminous objects that are brighter than diffuse white.

fHLG(x) =







p
3x , if 0≤ x ≤ 1

12

a ln(12x − b) + c, if 1
12 < x ≤ 1

(2.11)

a = 0.17883277 b = 1− 4a c = 0.5− a ln(4a)

Compared to PQ, HLG spends less code values on the darker parts of the tone-scale

when encoded with the same bit depth. This results in possible quantization artifacts
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for the rare case of noiseless and textureless content in dark viewing environments.

However, HLG has better backward compatibility to legacy SDR monitors and im-

proved performance with legacy compression codecs. Due to the relative encoding,

there is no need for tone mapping HLG signals at the receiver side for typical peak

luminances of current HDR television sets between 500 and 2000 cd/m2.

2.3.3.5 Comparison of HDR Transfer Functions

Figure 2.4 illustrates the bit-savings of PQ compared to a logarithmic or gamma en-

coding and the HLG transfer function. PQ closely follows the minimum discriminable
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Figure 2.4: Needed tonal resolution of the transfer functions PQ, floating-
point, logarithmic, gamma and HLG to stay below the visibility threshold ac-
cording to Barten’s CSF model. HLG assumes a black level of 0.01 cd/m2,
logarithmic and gamma encodings incorporate a black level of 0.0001 cd/m2.
Adapted from [140] and extend with HLG and minimum black level.

steps from the Barten (ramp) threshold. The Barten (ramp) limit describes the dis-

crimiation limit according to Barten for step-edge stimuli as they occur in the quanti-

zation of gradients (ramps). The threshold visibility for step edges is lower compared

to the sine pattern described by Barten’s spatial CSF model [36]. The Schreiber limit

is a model introduced by Schreiber and described in ITU-R Report BT.2246-5 [93].
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12-bit PQ provides a visually lossless encoding for any luminance value between 0

and 10000 cd/m2 while a logarithmic encoding would need 13 bits and a gamma 3.0

curve would require 14 bits to quantize the same dynamic range without causing vis-

ible artifacts. HLG also needs 14 bits to stay below the Barten (ramp) limit. Half-float

encoding is included for informational purposes only.

When using a tonal resolution of 12 bits for the PQ, logarithmic, gamma 3.0 and

HLG transfer functions as illustrated in Figure 2.4, only PQ can quantize any content

without causing artifacts above the visual detection theshold.
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Figure 2.5: PQ, logarithmic, gamma and HLG transfer functions at 12-bit
tonal resolution compared to Barten’s CSF model. HLG assumes a black level
of 0.01 cd/m2, logarithmic and gamma encodings incorporate a black level of
0.0001 cd/m2. Adapted from [140] and extend with HLG and minimum black
level.

2.4 Color Difference Encodings

The current colorimetric reference system started with the definition of the CIE 1931

XYZ color matching functions in 1931. Fairman et al. [27, 62] provide an overview of

how the CIE 1931 XYZ color matching functions were derived from the color matching

experiments of Guild [77] and Wright [203].
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The CIE 1931 XYZ color system provides a common basis to compare minimum dis-

criminable steps in chromaticity. Judd [99] and MacAdam [129] first measured color

JND ellipses to derive more constant chromaticity spaces. CIE 1976 u′v′ illustrated in

Figure 2.6 is a linear transformation of CIE 1931 xy enhancing perceptual uniformity

by expanding the blue areas and compressing the green areas.

in CIE 1931 xy
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Figure 2.6: Minimum discriminable differences in CIE 1931 xy and CIE 1976
u’v’ chromaticity space. The MacAdam ellipses [129] for viewer PGN are
shown 10 times amplified.

The formula for converting from CIE 1931 xy to CIE 1976 u′v′ is given in Equa-

tion (2.12) and (2.13):

u′ =
4x

−2x + 12x + 3
(2.12)

v′ =
9y

−2x + 12y + 3
(2.13)

2.4.1 Spatial Color Contrast Sensitivity

In 1984 Mullen extended MacAdam’s, Judd’s and Wright’s measurements that are

based on step edges to incorporate spatial frequency. The resulting chromatic con-
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Figure 2.7: Visualization of color contrast sensitivity depending on spatial
frequency. Preferably watch this illustration on a high spatial and tonal reso-
lution sRGB screen [87].

trast sensitivity functions predict the minimum discriminable step depending on spa-

tial frequency [144]. Figure 2.7 illustrates the dependency of color contrast sensitivity

on spatial frequency. As in the visualization of the achromatic CSF in Figure 2.1 the sig-

nal amplitude is kept constant for the same position on the amplitude scale. Mullen’s

chromatic CSF measurements are extended by Kim et al. to higher luminance ranges

as they are typical for HDR imaging [103].

2.4.2 Color Appearance Models

Measuring JNDs as described in the preceding section and designing color spaces that

are uniform on a visibility threshold level results in color spaces that are optimal for

efficient encoding. But adding up JNDs does not automatically result in perceptual

uniformity for larger supra threshold differences. A color spaces designed to be per-

ceptually uniform on a supra threshold level is called Color Appearance Model (CAM).

‘Color appearance models aim to extend basic colorimetry to specify the perceived

color of stimuli in a wide variety of viewing conditions’ [61, page 1]. Thus, color ap-
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pearance models are not primarily optimized for uniformity at the detection level but

rather aim to link the appearance dimensions lightness, hue and saturation to the pho-

tometric CIE 1931 XYZ color matching functions assuming a certain set of adaptation

parameters for the human visual system.

2.4.2.1 CIE L*a*b*

One of the first and most used color appearance models is called CIE L*a*b* [89]. CIE

L*a*b* first applies a nonlinearity fLab:

fLab(x) =







x
1
3 , if x >

�

6
29

�3

x 841
108 +

4
29 , if x ≤

�

6
29

�3 (2.14)

to the CIE 1931 XYZ signals scaled by the white point XnYnZn (‘wrong von Kries’ adap-

tation). The fLab nonlinearity simulates the nonlinear response function of the human

visual system and can be considered as an implementation of Stevens Law as described

in Section 2.1. Whereas L∗ is a direct result of applying the CIE L*a*b* nonlinearity

to Y:

L∗ = 116 fLab(Y /Yn)− 16 (2.15)

a∗ and b∗ are calculated by taking the difference between nonlinearly coded Y and X

or Z respectively, simulating the color opponent processing in the retina:

a∗ = 500
�

fLab(X/Xn)− fLab(Y /Yn)
�

(2.16)

b∗ = 200
�

fLab(Y /Yn)− fLab(Z/Zn)
�

(2.17)

Chroma C∗ab is calculated as the Euclidean distance from the achromatic axis and hue

hab is defined as the polar angle around the achromatic axis:

C∗ab =
p

a∗2 + b∗2 (2.18)

hab = atan2
�

b∗

a∗

�

(2.19)
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CIE L*a*b* performs respectably well in terms of perceptual uniformity for standard

dynamic range imagery and for gamut mapping in printing applications. However, CIE

L*a*b* is not as hue linear compared to modern color appearance models. Figure 2.8

shows a linear desaturation of the blue primary color of sRGB in CIE L*a*b* and a

newer color appearance model - CIECAM02. When desaturating blue in CIE L*a*b*

as illustrated in Figure 2.8 a) the hue changes towards pink when being mapped on

a straight line in the direction of the achromatic axis [68]. Figure 2.8 b) shows that

CIECAM02 does not suffer from this issue.

a) CIE 1976 L*a*b*

b) CIECAM02 with HPE CAT

Figure 2.8: Example for CIE L*a*b* hue linearity compared to CIECAM02.
Best viewed on a color accurate sRGB monitor in a dark environment.

The most common mapping of CIE L*a*b* to digital code values for image encoding

is specified in the LabTIFF documentation [2]. For LabTIFF the 0 to 100 range of L∗

is scaled to the full 0 to 255 range of 8-bit unsigned integers:

L∗LabTIFF8 = b255
L∗

100
c (2.20)

The respective scaling is performed for 16-bit encodings:

L∗LabTIFF16 = b65535
L∗

100
c (2.21)

For 8-bit encodings the chroma channels a∗ and b∗ are quantized and clamped to the

-127 to 128 range of signed 8-bit integers without any scaling:

a∗LabTIFF8 = ba
∗c (2.22)

b∗LabTIFF8 = bb
∗c (2.23)
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For 16-bit encodings a∗ and b∗ are multiplied by 256 before clamping and quanti-

zation to the -32768 to 32767 range of signed 16-bit integers:

a∗LabTIFF16 = b256a∗c (2.24)

b∗LabTIFF16 = b256b∗c (2.25)

The LabTIFF encoding is limited to standard dynamic range and does not cover wide

gamut color spaces like Rec.2020 [92]. This is by design because LabTIFF is only

intended for use in printing applications [2, page 12]: ‘Limiting the theoretically un-

bounded a∗ and b∗ ranges to +/- 127 allows encoding in 8 bits without eliminating

any but the most saturated self-luminous colors’. The full bit order for LabTIFF is

shown in Figure 2.9.
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Figure 2.9: Bit order of the LabTIFF encoding.

2.4.2.2 IPT

IPT was developed by Ebner to address the limited hue linearity of CIE L*a*b* [54].
Instead of applying the nonlinearity on white point adapted CIE 1931 XYZ, IPT first

transforms CIE 1931 XYZ values to the LMS cone response domain:
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S






=







0.4002 0.7075 −0.0807

−0.2280 1.1500 0.0612

0.0000 0.0000 0.9184













X

Y

Z






(2.26)

and then applies a gamma 0.43 nonlinearity to LMS. This nonlinearity can again be

thought as an application of Stevens Law as described in Section 2.1. The 0.43 gamma

is the result of an optimization process to generate a most hue linear chroma plane



2.4 Color Difference Encodings 51

when using the LMS cone responses as primaries [54]:

fIPT(x) =







x0.43, if x ≥ 0

−[(−x)0.43], if x < 0
(2.27)

Subsequently, the nonlinear LMS signals are decorrelated into I for Intensity and the

color difference channels P and T named after the corresponding color deficiencies in

human vision, Protanope and Tritanope:
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T
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0.4000 0.4000 0.2000

4.4550 −4.8510 0.3960

0.8056 0.3572 −1.1628













fIPT(L)
fIPT(M)
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(2.28)

As with CIE L*a*b* chroma CPT can be calculated as the Euclidean distance from the

achromatic axis and hue hPT is defined as the polar angle around the achromatic axis:

CPT =
p

P2 + T 2 (2.29)

hPT = atan2
�

P
T

�

(2.30)

IPT is often used for gamut mapping in print applications [143] and was found to be

a good candidate for gamut mapping in SDR WCG video applications [68]. To date

IPT has not been used as an image storage format.

2.4.2.3 Extended Color Appearance Models

There are newer color appearance models beyond CIE L*a*b* and IPT like

CIECAM02 [142]. Fairchild’s book on color appearance models [61] contains an

overview on recent developments in this area. Unfortunately, the computational com-

plexity of the newer color appearance models is higher compared to CIE L*a*b* and

IPT. Also these newer color appearance models typically rely on additional information

about the viewing environment and the observer. Therefore, models like CIECAM02

are not suited for general purpose image encoding.
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2.4.3 Standard Dynamic Range Video Color Encodings

Typically, video signals are not distributed or stored as nonlinear R′G′B′ but they are

further decorrelated into one luma and two chroma channels. The term ‘luma’ is used

when the achromatic color channel is calculated from nonlinear R′G′B′. This method

for decorrelation of chroma and luma was introduced by Valensi [192] in 1938 for

television applications. Figure 2.10 shows an example image as scatterplot. It can be

observed that the correlation between R′, G′ and B′ is stronger compared to correlation

between Y′, CB and CR. Having chroma separated from luma facilitates transmitting
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color difference channels at lower resolutions to exploit the lower peak contrast sensi-

tivity of the human visual system for color as measured by Mullen [144]. This concept

of subsampling color was introduced by Bedford [16] in the 1950s. Decorrelation also

helps in compression by reducing energy in the chroma channels for typical imagery.

High definition television systems in use today still perform Y′CBCR color difference

coding [94] for subsampling and video compression. Traditional Y′CBCR signals start

by first transforming to RGB signals relative to the Rec.709 primaries [94]:
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(2.31)

Then the Rec.709 nonlinearity introduced in Equation (2.5) is applied to RGB:

R′709 = f709(R709) G′709 = f709(G709) B′709 = f709(B709) (2.32)

Further, luma Y′ is calculated by a mix of R′, G′ and B′ weighted by the contributions

of R, G and B to CIE 1931 luminance:

Y ′709 = 0.2126 R′709 + 0.7152 G′709 + 0.0722 B′709 (2.33)

This is followed by calculating the two color difference channels via subtracting luma

from the nonlinearly coded blue (B′) and red (R′) signals:

C ′B 709 =
B′709 − Y ′709

1.8556
(2.34)

C ′R 709 =
R′709 − Y ′709

1.5748
(2.35)

These steps can be thought as modeling the color opponent processing of the human

visual system. Equations (2.33 to 2.35) can also be written as a linear transformation:
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(2.36)
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Classic Y′CBCR is used in almost all bandwidth limited imaging chains, from digital cin-

ema [186] via television [94] to photography [88]. Classic Y′CBCR has been extended

to support a wider color gamut in the Rec.2020 television standard [92]. Although

Rec.2020 supports a wide color gamut, it is still only meant for encoding standard

dynamic range imagery.

2.4.4 High Dynamic Range Color Encodings

The very early HDR color encodings originate from the domain of image synthesis,

specifically physically based rendering algorithms, where an HDR representation of

computer generated images is inherent to the process of image synthesis. Radiance is

often quoted to be the first physically based renderer [199]. As most render engines

were based on RGB tristimulus colors so are the early HDR color encodings.

2.4.4.1 RGBE

The external picture storage format for the Radiance renderer is named ‘pic’ from the

file extension ‘.pic’ or often called RGBE [198] for Red, Green, Blue and Exponent.

For the RGBE format all three R, G, B color channels share one common exponent E

that is determined by the maximum value of R, G and B:

E = dlog2(max(R, G, B))e+ 128 (2.37)

R=
�

256R/2(E−128)
�

G =
�

256G/2(E−128)
�

B =
�

256B/2(E−128)
�

(2.38)

The final storage format is illustrated in Figure 2.11.

21 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Red Green

Blue Common Exponent

Figure 2.11: Bit order of the RGBE encoding.
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2.4.4.2 OpenEXR

In current generation, non spectral render engines, colors are typically stored as three

floating point numbers representing a mixture of red, green and blue light of a well

defined spectral power distribution. There is no need for a nonlinear encoding curve in

OpenEXR because floating point numbers are inherently of variable absolute precision.

As an example the 10-bit mantissa of IEEE 754-2008 half-float [86] quantizes with a

tonal resolution of 1024 steps per f-stop which is below the 0.3% maximum contrast

sensitivity of the human visual system according to Barten’s spatial CSF model [14].
See Figure 2.4 in Section 2.3.3.5 for an illustration of the precision of floating point

encoding compared to other HDR transfer functions.

OpenEXR was developed by Kainz at ILM in 1999 as a storage format for half-float,

single-precision and 32-bit integer images to avoid rounding errors and save addi-

tional computations when storing images as files [1]. In the further readings the term

‘OpenEXR’ will refer to the most used flavor, storing red, green and blue color channels

in IEEE 754-2008 half-float format [86]. The bit order of half-float OpenEXR is shown

in Figure 2.12.

/ 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
Sign Exponent Mantissa
+-

/ 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
Sign Exponent Mantissa
+-

/ 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
Sign Exponent Mantissa
+-

Red

Green

Blue

Figure 2.12: Bit order of the OpenEXR half-float encoding.

2.4.4.3 LogLuv

LogLuv was introduced by Ward in 1998 to increase the efficiency of 32 bits per pixel

image storage compared to RGBE [115, 116]. LogLuv stores the luminance of an

image measured in cd/m2 via a logarithmic encoding in a 15-bit integer representation
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plus one sign bit:

Se = sign(Y ) (2.39)

Le =







�

256(log2(|Y |) + 64)
�

, if Y 6= 0

0, if Y = 0
(2.40)

LogLuv chromaticity is encoded as CIE 1976 u′v′ chromaticity introduced in Sec-

tion 2.4. u′ and v′ are scaled and encoded to 8 bits color resolution:

ue =
�

410u′
�

(2.41)

ve =
�

410v′
�

(2.42)

The full bit order for LogLuv is shown in Figure 2.13.

/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Sign (Se) Log encoded Luminance (Le)

u’ (ue) v’ (ve)

+-

Figure 2.13: Bit order of LogLuv32 encoding. Adapted from [116, Figure 3].

There is also a LogLuv variant that uses 24 bits per pixel. This variant will not be

described due to its limited dynamic range, lower color resolution and incompatibility

with classic compression because of the scan-line encoding scheme for CIE 1976 u′v′

chromaticity.

2.4.4.4 Y′′u′′v′′

Y′′u′′v′′ was introduced by Poynton et al. in 2014 [161]. It is based on LogLuv but the

logarithmic nonlinearity for encoding luminance is exchanged for the PQ curve [184]
as depicted in Equation (2.10). Using PQ reduces the bit depth requirements from 15

bits needed for the Le component of LogLuv to 12 bits with PQ because of the higher

coding efficiency of PQ and the lower dynamic range compared to LogLuv.

Y ′′ = fPQ(Y ) (2.43)
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The CIE 1976 u’ and v’ chromaticities are compressed for values below 5 cd/m2 and

subsequently renamed to u” and v”:

u′′ =WPu′ +min
�

max
�

Y ′′

epsilon
,

1
256

�

, 1
�

(u′ −WPu′) (2.44)

v′′ =WPv′ +min
�

max
�

Y ′′

epsilon
,

1
256

�

, 1
�

(v′ −WPv′) (2.45)

WPu′ = 0.1978 WPv′ = 0.4683 epsilon= 0.25

Compressing chroma for lower luminance values helps to reduce the color noise with-

out affecting color quantization artifact visibility because the color contrast sensitivity

in human vision is reduced for lower luminance values.

2.4.4.5 ITU Rec.2100

Before introducing Rec.2100 the International Telecommunication Union (ITU) first

proposed the Rec.2020 system [92] for the next generation of standard dynamic range

and wide color gamut Ultra High Definition video. Rec.2020 uses wider color pri-

maries compared to Rec.709 but still applies a gamma curve with a linear toe followed

by a color differencing matrix. This is a system similar to regular Rec.709 Y′CBCR

introduced in Section 2.4.3 though with wider, still physically realizable primaries.

Rec.2020 did not find a wide adoption and is superseded by Rec.2100 [96], which

adds two HDR transfer curves and a new color differencing scheme to Rec.2020. The

primaries for Rec.2020 and Rec.2100 are the same:
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(2.46)

The Rec.2100 standard specifies two alternative curves for HDR encoding. The first

curve is the PQ / SMPTE ST.2084 curve presented in Equation (2.10). Using Rec.2100

with PQ curve will be referred to as ‘Rec.2100 PQ’ within this thesis.
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The PQ nonlinearity is applied to R, G, B, resulting in RPQ, GPQ and BPQ:

RPQ
2100 = fPQ(R2100) GPQ

2100 = fPQ(G2100) BPQ
2100 = fPQ(B2100) (2.47)

As in conventional Y′CBCR the luma channel Y PQ
2100 is calculated from the nonlinearly

coded RPQ
2100, GPQ

2100 and BPQ
2100, channels weighted by the contributions of R, G and B to

CIE 1931 luminance:

Y PQ
2100 = 0.2627 RPQ

2100 + 0.6780 GPQ
2100 + 0.0593 BPQ

2100 (2.48)

The color difference channels are derived by subtracting luma YPQ from BPQ and RPQ:

C PQ

B 2100
=

BPQ
2100 − Y PQ

2100

1.8814
(2.49)

C PQ

R 2100
=

RPQ
2100 − Y PQ

2100

1.4746
(2.50)

Equations (2.48) to (2.50) can also be written as a linear transformation:
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(2.51)

The second curve presented in Rec.2100 is the HLG curve [35] as introduced in Equa-

tion (2.11). The HLG encoding scheme applies a piecewise defined function to the

linear R, G, B Rec.2100 primaries (2.46) resulting in RHLG, GHLG and BHLG:

RHLG
2100 = fHLG(R2100) GHLG

2100 = fHLG(G2100) BHLG
2100 = fHLG(B2100) (2.52)

The calculation of luma and the two chroma channels follows the Rec.2100 PQ Equa-

tion (2.51). In this thesis, the Rec.2100 Hybrid Log Gamma encoding will be referred

to as ‘Rec.2100 HLG’.

Rec.2100 also specifies a second set of primaries (LMS) and a different color differenc-

ing matrix (ICTCP). These will only be introduced in Chapter 2.4 because the ICTCP

encoding scheme is based on contributions of this thesis.
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2.4.5 Comparison of HDR Color Encodings

The HDR image encodings presented in this chapter are all tailored for specific applica-

tions, but none of them fully satisfies all requirements for entertainment media video

distribution. As an example, OpenEXR needs too much bandwidth, RGBE and LogLuv

are not suited for compression because the pure logarithmic curve amplifies the en-

ergy of the typical photon shot and sensor read noise in the dark areas. Rec.2100 HLG

and Rec.2100 PQ are only perceptually uniform near the achromatic axis, quantizing

saturated colors inefficiently. Finally, Y′′u′′v′′ is not hue linear enough for high quality

gamut mapping and needs more computational resources compared to Rec.2100 HLG

and Rec.2100 PQ because of the division by a variable component to calculate the u′′v′′

chroma channels. Tables 2.2 and 2.3 give an overview of the parameters for the most

common standards and proposals for HDR and WCG file storage and distribution.

Table 2.2: Comparison of HDR and WCG color encodings for image storage.
‘QS’ refers to one quantization step.

OpenEXR RGBE LogLuv

Bit per pixel 48 32 32 bits

Min. luminance 6=0 5.96 e-8 5.87 e-39 5.44 e-20 cd/m2

Max. luminance 65504 6.79 e+38 1.84 e+19 cd/m2

Dynamic range 40 256 128 f-stops

QS at 0.1 cd/m2 0.061 ∼ 0.5 0.27 %

QS at 10 cd/m2 0.078 ∼ 0.5 0.27 %

QS at 1000 cd/m2 0.050 ∼ 0.5 0.27 %

Negative values Yes No Yes

Decorrelated No No Yes

Primary Rendering and Storage of computer

application postproduction generated imagery

Limitations High bandwidth, Dynamic range beyond

no decorrelation distribution needs.

defined Quantization in dark

areas too high.
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Table 2.3: Comparison of HDR and WCG color encodings for image distribu-
tion over 10-bit channels. ‘QS’ refers to one quantization step when encoding
with 10 bits.

Rec.2100 HLG Rec.2100 PQ Y′′u′′v′′

Bit per pixel 30 or 36 30 or 36 30 or 36 bits

Min. luminance 6= 0 3.8 e-4 4 e-5 4 e-5 cd/m2

Max. luminance 1200 10000 10000 cd/m2

Dynamic range 22 28 28 f-stops

QS at 0.1 cd/m2 12.75 3.76 3.76 %

QS at 10 cd/m2 1.24 1.25 1.25 %

QS at 1000 cd/m2 0.53 0.9 0.9 %

Negative values No No No

Decorrelated Yes Yes Yes

Primary Application Backwards com- High quality High quality

patible televison television television

distribution distribution distribution

Limitations Quantization Not hue linear Not hue linear

artifacts with enough, inef- enough, compu-

dark low noise ficient color tational com-

content, not hue encoding plexity too high

linear enough,

inefficient color

encoding



Chapter 3
HDR and WCG Video Data Set -

‘HdM-HDR-2014’

For scientists developing algorithms and hardware for HDR video processing, trans-

mission, storage and display, it is crucial to have high quality HDR content available.

These images must be of sufficient spatial, tonal and temporal resolution as well as

high dynamic range and wide color gamut, ideally representing the output of future

cameras. Following the MPEG definition of HDR [128], high dynamic range starts at

a latitude of 16 stops or more. As of 2014, there was no cinematic HDR video data set

available. The marginal existence of HDR video sequences stands in great contrast to

the domain of still imaging, where HDR-image capture has a long history [9] and is

well studied and commonly practiced [44, 165]. The following chapter will introduce

a novel HDR and WCG video dataset that can be used to evaluate compression codecs,

storage formats, and display technologies. It is based on the paper that describes the

creation of the HdM-HDR-2014 dataset [71].

While high resolution and higher frame rate videos can be acquired by using cur-

rent generation motion picture cameras, there is no single HDR camera with a ‘Super

35mm’ sized sensor available. Throughout the last decade, professional digital film

cameras gained around 4 stops of dynamic range, from about 10 stops in 2001 [188] to

14 stops in 2011 [23]. With high dynamic range displays on the horizon, future image

acquisition systems are expected to feature an even higher dynamic range [25]. To

61
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simulate the dynamic range of future cameras today, a combination of two exposures

is needed.

Figure 3.1 shows a visual comparison between the dynamic range of a professional

motion picture camera, a dual-camera setup and current display devices. While one

Alexa camera [6] can capture a higher dynamic range compared to current mainstream

display devices, future HDR displays will need even higher dynamic range imagery.

Using two Alexa cameras in a mirror rig as explained in the following sections pro-

vides a dynamic range satisfying the MPEG requirements for HDR of 16 photographic

stops [128] and the needs of state-of-the-art HDR displays.
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Figure 3.1: Dynamic range of current acquisition and distribution devices
compared. ‘Alexa’ refers to the ARRI Alexa camera [6], ‘2*Alexa’ to the
dual camera rig as used herein, ‘TV’ to a television set conforming to ITU
BT.1886 [90], ‘Cinema’ to a SMPTE RP 431-2 cinema projection [181] and
‘HDR Display’ to a Dolby PRM-4220 reference display [46].

Image quality assessments should be performed using high fidelity images. Only if the

original images are of significantly higher quality compared to the altered footage, any

degradation in image quality caused by a compression algorithm or display device can

be clearly assigned to this individual conversion step. The needed image quality is

not only determined by the signal quality of the image acquisition system, but also

by lighting, depth of field, make-up and staging. As an example, a faithful skin tone

reproduction of a non-powdered actor in typical room lighting will not appear lifelike
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to most observers. Humans often appear unhealthy, or look tired in reproductions,

when filmed without cinematic lighting and makeup. Hence, viewers expect to see

staged pictures when evaluating video quality. Thus, staged images are important to

avoid misinterpretations, especially when dealing with non-expert observers in user

studies. Therefore, a scientific dataset for visual evaluation still has to meet the aes-

thetic standards of a commercial film production and at the same time deliver a signal

quality that is sufficient for research. The required aesthetic quality calls for the use

of ‘Super 35mm’ sized sensors and professional lenses, make-up, set-design and film

lighting.

The goal of the HdM-HDR-2014 project is to provide cinematic footage of high visual

and technical quality that covers the dynamic range and gamut of future sensors. Us-

ing this video content of extended dynamic range and wider gamut, tone mapping

algorithms, compression codecs and displays for future HDR and WCG content can be

evaluated today.

3.1 Related High Dynamic Range Video Data Sets

Research on HDR video acquisition includes time-sequential approaches [79, 100]
and multi sensor camera rigs [189]. One of the earliest HDR video data sets avail-

able to the scientific community is the ‘Tunnel Sequence’ [109]. More recently three

additional HDR datasets were released: The Linköping University HDRv Reposi-

tory [110, 111, 121], captured with a SpheronVR camera, shows everyday scenes

on and near the Linköping University campus. The University of British Columbia’s

Digital Media Lab also released an HDR video dataset named DML-HDR [191]. This

footage was acquired using a ‘RED SCARLET–X’ camera and also features unstaged

everyday scenes. Finally, Technicolor contributed a number of outdoor scenes and

one animated scene to MPEG [118]. These clips are captured using two Sony F3 or

F65 cameras in a mirror rig and also feature unstaged documentary scenes.

As of 2014, no cinematic HDR video has been gathered. All existing HDR data sets

feature un-staged scenes with non-powdered actors and without cinematic lighting.
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3.2 Methods

In this section the selection and design of scenes will be presented and the dual cam-

era video acquisition system is introduced. The dynamic range of the dual camera

rig is evaluated via simulated and measured signal to noise curves. Further, the sig-

nal processing steps from sensor via recording and reconstruction to distribution are

described and the technical infrastucture for visual verification and color grading is

presented.

3.2.1 Selection and Design of Scenes

Five categories of scenes are designed to focus on different challenges in HDR storage,

compression, tone mapping, gamut mapping and display:

The Still Life scene presented in Appendix A.1 is intended to help develop new camera

characterization methods and provide a reference for color rendering algorithms by

including a color checker. The dark and bright skin tones and hair provide a challenge

to tone mapping operators.

The Wide Gamut and Moving Lights scenes presented in Appendix A.2 are designed

to include a very large gamut in terms of dynamic range and color saturation at the

same time. Bright and saturated colors are a special challenge in tone and gamut

mapping because the mapping operator must decide if it preserves saturation or lu-

minance. The large gradients of the colorful lights in the smoke are intended to help

verify tonal resolution for wide color gamut baseband encodings and the small satu-

rated lights are designed to pose challenges in color subsampling. Fast moving lights

and flashes reduce temporal redundancy and are therefore a challenge to compression

algorithms.

The Low Key Scenes presented in Appendix A.3 are intended for evaluating moni-

tor technologies. The small bright details unmask the deficiencies of dual modula-

tion [174] monitors. In contrast, RGBW monitors [196] render colored bright objects

either too dark or desaturated. Lots of monitor and projection technologies are limited
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by straylight. The low key scenes are intended to help determine the impact of stray-

light when removing only the very bright areas of the image and observing the change

in the dark areas. The low light scenes are also designed to pose a challenge in tone

mapping when rendering the dark details brighter and thus amplifying noise. Espe-

cially the fire scenes are designed for evaluating the trade-off tone mapping operators

take in rendering the flames bright, but still colorful.

The Sunlight Scenes presented in Appendix A.4 are color graded to challenge even the

brightest new monitor technologies when displayed at full luminance. They are de-

signed as a difficult subject for tone mapping operators when converting the graded

HDR version to lower luminance. They are also intended for fine tuning automatic

color rendering algorithms because lowering overall luminance often calls for in-

creased contrast and saturation.

The High Contrast Skin Tones scenes presented in Appendix A.5 are designed to

challenge the balance of bit-allocation between dark and bright areas in compression.

In addition, they are intended to be difficult in tone mapping because humans tend to

be most critical when evaluating faces and skin tones.

3.2.2 Set Design, Staging and Lighting

The set design, staging, lighting, lensing and makeup of the HdM-HDR-2014 data set

are selected to represent those typically found in the respective production types of

the individual scenes, such as documentary, advertising or feature film.

As an example, costumes are chosen as typically used in motion pictures. Only the

white shirt in the ‘Poker’ scene and the glittering dress of the ‘Showgirl’ are deliber-

ately selected to go beyond average costumes in order to create a challenge for HDR-

lighting. Studio-sets are built in 180°, with no objects or other lighting equipment

bouncing back light from behind the camera. The fill light only comes from visible

objects in the scene. This is also true for the ‘Fireplace’ scene.

The ‘Poker’ scene is lit by one single 6 kilowatt Hydrargyrum Medium-arc Iodide (HMI)

keylight coming straight from above the table. The actor’s faces are only lit by bounced
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light from table cloth, except if they lean forward and reach the keylight. Like the

actors, the background scenery is only illuminated by bounced light from the keylight

plus the in-frame candles. This creates a natural behavior of light in a controlled

environment. The ‘Bistro’ scene follows the same concept: a single strong keylight is

used to simulate the sunlight shining through a small slot through the window and

through curtains, illuminating the whole ‘indoor’ scenery. For the ‘Showgirl’ scene, in

order to create the dynamic range of 18 stops and a temporal change of different light

qualities in one scene, the scene is re-lit throughout the runtime of the shot, changing

from a tungsten-lit low-key scenery (girl sitting at mirror) to a high-key scene with

daylight simulated by a 6 kilowatt HMI light.

All sceneries are staged to emphasize the perception of light. In the ‘Car’ scenes the

camera travelling is intended to emphasize material appearance by creating moving

reflections of bright sunlight on the black car finish. Deep shadows under the car

extend the dynamic range of the scene down to the noise floor of the camera system.

No additional lighting was used on all outdoor scenes. The ‘Fishing’ scene represents

a typical establishing shot of movies by combining a pan with a camera movement

leading to main-scenery. This gives a typical rhythm and feeling of an opening scene

and is designed to demonstrate the increased perception of judder in HDR presentation

at 24 and 25 frames per second.

Objects are staged to get cinematic images with a shallow depth of field by tightly

controlling in-focus areas and rendering the fore- and background out-of-focus. For

the scenic production mostly ‘Zeiss UltraPrime’ lenses are used while those scenes that

represent documentary scenes are acquired using ‘Zeiss CompactPrime CP.2’ lenses and

‘Angéniuex Optimo 28-76mm, T.2,6’ zoom lenses. Dolly grip is only used in sequences

that are representative for movie or advertising shootings. In simulated documen-

tary shots like ‘Smith’, ‘Fireplace’ and the ‘Beerfest’ and ‘Carousel’ sequences, only a

reduced amount of makeup is applied.

3.2.3 High Dynamic Range Video Acquisition

HDR still images and videos are often acquired by capturing multiple images with

different exposures, one after the other [44, 100]. When dealing with moving objects,
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artifacts can be introduced by not integrating all exposures at the same time. The

darkened flames in Figure 3.2 serve as an example of ghosting artifacts introduced

by time-sequential HDR image capture using an Apple iPhone 4S mobile phone with

‘HDR’ feature enabled in the standard camera app. The brightest parts of the flames

are replaced from a second shorter exposure. In this case, the flames have already

moved at the time the second exposure is captured. Hence, nothing suitable can be

inserted, rendering parts of the flames too dark. To avoid these ghosting artifacts with

moving subjects, it is essential to capture all exposures simultaneously when aiming

for HDR reconstruction of moving objects.

Figure 3.2: Illustration of ghosting artifacts introduced by time-sequential
HDR image capture.

To generate HDR video with different exposures captured at the same time, a mirror

rig, as shown in Figure 3.3 a) is used. A standard glass pane with anti-reflective coating

on the backside is employed as a beam splitter. This results in a ratio of around 1:16

between reflection and transmittance, shifting the camera exposures by about 4 f-

stops. To be able to use large sensor motion picture cameras, the mirror is mounted

in front of the lens, instead of splitting the light behind the lens, as proposed by Tocci

et al. [189]. Thus, aperture, integration time and sensor gain can be kept at identical

settings in both cameras. This results in the same depth of field and motion blur, but

different signal to noise ratios, which are used to enhance the dynamic range. Both

cameras are adjusted mechanically for geometric alignment and the integration times

of the camera-sensors are synchronized to record exactly the same fraction of time.
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Scene

Lowlight Preserving
Camera

Highlight Preserving
Camera

Highlight Preserving
Camera

Lowlight Preserving
Camera

2x Recording Unit
1920x1080 ProRes
LogC 4:4:4 12-bit

Semitransparent Mirror

~6%

~94%

Scene

2x Recording Unit
1920x1080 ProRes
LogC 4:4:4 12-bit

Semitransparent Mirror

~50%

~50%

a)

b)

Neutral Density Filter

Figure 3.3: Schematic drawing of the mirror rigs used for HDR-video acqui-
sition. Rig a) is used for most shots while some shots are aquired using a
mirror with 50% transmission and a 4 f-stop neutral density filter in front of
one camera as depicted in b).

When used with lenses of longer focal length, the 1:16 beam splitter generates ghost-

ing artifacts caused by double reflections in the mirror glass. Hence some shots are

acquired using an alternative setup shown in Figure 3.3 b). It employs a 1:1 semi-

transparent mirror instead of the 1:16 mirror. In this case, a neutral density filter has

to be mounted in front of one camera to shift the exposure of this camera.

The ‘Alexa M’ camera, a Complementary Metal-Oxide-Semiconductor (CMOS) sensor

based motion picture camera made by Arnold & Richter Cine Technik (ARRI) is chosen

for its large dynamic range and accurate color reproduction [6]. The sensor is operated

in a dual gain mode resulting in a dynamic range (full-well/read-out noise) of 14.8

f-stops [23]. The exposure is adjusted to capture extended detail in dark and bright

areas compared to a typical exposure with a single camera. Frame rates of 24 frames

per second (fps) and 25 fps represent both television and cinema applications. The
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integration time is set to 1/50 second (172.8°/ 180° shutter) to achieve a cinematic

look. Only the high-speed shots are recorded with a 356° shutter to gain one additional

f-stop of exposure.

During in-camera image processing, the signal from the sensor is converted from ana-

log to digital on two paths with different levels of analog amplifications. The shadows

are reconstructed from the high gain path and the highlights from the low gain path

[4]. The resulting 16-bit 2880 by 1620 resolution RAW Bayer pattern image is then

converted to 1920 by 1080 RGB-pixels and coded in 12 bit LogC wide gamut color

space [24] to be recorded as video file using near visually lossless 330 Mbit/s ProRes

[5] intra-frame compression codec. The theoretical and measured signal-to-noise ratio

for the full dual camera rig can be seen in Figure 3.4.
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Figure 3.4: Simulated and measured signal-to-noise ratio of the image acqui-
sition system.

The simulated signal-to-noise ratio in Figure 3.4 is calculated by simulating noise for

both exposures according the document describing the Alexa camera’s noise character-

istics [23] followed by merging the two exposures as described in the postproduction

section 3.2.4. The measured signal-to-noise ratio is determinded by over- and under-

exposing a reflective gray step wedge chart to extend the 64:1 dynamic range of the

chart beyond the dynamic range of the full acquisition system. The measured signal-
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to-noise ratio is calculated from the mean and standard deviation of 10.000 pixels

from a 50 by 20 pixel area over 10 frames.

3.2.4 Postproduction

In postproduction, the highlight preserving image is spatially aligned to the lowlight-

preserving image by warping through local disparity estimation [80]. Subsequently

the colors of the highlight-preserving image are matched to the lowlight-preserving

image through multiplication of the individual color channels in linear Alexa Wide

Gamut domain by minimizing the sum of squared differences per color channel. All

further postproduction steps are also carried out in the Alexa Wide Gamut color space

spanned by the primaries listed in Table 3.1.

Table 3.1: CIE 1931 xy chromaticity coordinates of the primary colors of the
Alexa Wide Gamut color space.

Red Green Blue White
x 0.6840 0.2210 0.0861 0.3127
y 0.3130 0.8480 -0.1020 0.3290

After spatial exposure alignement, the two images are merged to one HDR frame by

blending between both images, depending on the luminance of the individual pixels.

Finally the border pixels are set to black, to mask pixels where no highlight pass is

available due to the spatial displacement. See Figure 3.5 for an overview of the in-

camera image-processing pipeline.
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Figure 3.5: Overview of the in-camera video processing steps. The quanti-
zation is depicted above and below the arrows. If the quantization curve is
not linear, the corresponding nonlinearity, for example ‘LogC’, is noted.
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The dual gain read-out depicted in Figure 3.5 provides two times 14 bits of linear tonal

resolution merged with an offset of about 4 stops resulting in one 16-bit linear image

per camera. Combining this tonal resolution from both cameras is sufficient to cover

the full dynamic range of the footage.

As illustrated in Figure 3.6 the highlight preserving camera provides a tonal resolution

of 8096 code values for the top photographic stop (-1) below the clipping point (peak

white). The lowlight preserving camera still has a tonal resolution of 4 code values at

-18 stops below peak white.
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Figure 3.6: Limitations to tonal resolution by the camera sensor.

The 12-bit ARRI Alexa LogC color space with its pseudo logarithmic curve summarized

in Section 2.3.2 is shown in Figure 3.7. LogC limits the video streams from both

cameras to about 256 code values per stop. If RAW recording would have been used,

the top eleven stops could have been stored with higher tonal resolution.
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Figure 3.7: Limitations to tonal resolution by the camera sensor and LogC
storage combined.
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The postproduction steps are depicted in Figure 3.8. All processing steps are per-

formed in single precision 32-bit floating point per color channel. The tonal resolu-

Quality Control
(HDR Display)

OpenEXR
Storage
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Decoding &
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Float
32 
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Float
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Postproduction
From Highlight

Preserving
Camera

From Lowlight
Preserving
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Figure 3.8: Overview of the video processing steps in postproduction. The
quantization is depicted above and below the arrows. For integer representa-
tions the corresponding quantization curve, for example ‘LogC’ or ‘G2.6’ for a
pure gamma of 2.6, is noted.

tion of the final storage containers for the reconstructed but still scene-referred cam-

era footage is shown in Figure 3.9. The final OpenEXR files are still coded relative

to the ALEXA Wide Gamut primaries listed in Table 3.1. The half-float OpenEXR file

container provides at least 4 times the tonal resolution compared to the 12-bit LogC

quantization performed before. A range from 0 up to 500 in OpenEXR is used instead

of normalizing white to 1.0 to prevent the shadows from being quantized coarser by

the halved tonal resolution for each stop below 2−14 in the subnormal numbers of half

float [86, Chapters 3.4 and 7.5].

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Scene Exposure Below Peak White (f-Stops)

   1
   4

  16
  64
 256

1024
4096

C
od

ev
al

ue
s 

pe
r f

-S
to

p Reconstucted Camera Signal and Half-Float ‘OpenEXR’ Distribution

Reconstructed from both Cameras
OpenEXR File Container

Figure 3.9: Content tonal resolution compared to the half-float container used
for distributing the reconstructed camera footage.

The graded content is distributed in 16-bit TIFF container with SMPTE 2084 / PQ

nonlinear encoding as described in Section 2.3.3.3. Figure 3.10 illustrates that this

format quantizes about 16 times finer compared to what the captured footage con-
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tains. Thus, even assuming some contrast enhancements, there are no significant

limitations expected from the distribution container of the color graded version of the

HdM-HDR-2014 data set.
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Figure 3.10: Content tonal resolution compared to the PQ 16-bit integer con-
tainer used for distributing the graded content.

During postproduction, the rendered image sequences are screened using Filmlight’s

Baselight color grading system [66] outputting 12-bit pure gamma 2.6 encoded signals

on a Dolby PRM-4200 HDR monitor [46]. For quality control the images are displayed

three times with exposure offsets of -6, 0 and 6 stops to be able to see the full luminance

range near the peak contrast sensitivity of the human visual system and in a range

where the pure gamma 2.6 signal and the dual modulation LCD processing of the

PRM monitor provides the highest spatial and tonal resolution.

In addition to the PRM monitor a Sony PVM-2541A professional OLED monitor [34]
is used for a second pass of quality control to prevent the dual modulation algorithm

of the Dolby PRM from masking problems with small bright details.

For wide gamut verification a ‘Christie CP4220’ Digital Light Processing (DLP) digital

cinema projector [31] with modified notch-filters is used for quality control and grad-

ing. The custom narrow band-pass notch filters that block wavelengths around cyan

and yellow allow this projector to feature a gamut very close to the gamut defined

in ITU Rec.2100 [96]. The gamut and spectral power distribution of this Xenon DLP

cinema projector plus the custom notch filter are illustrated in Figure 3.11.
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Figure 3.11: Spectral power distribution and resulting gamut of the modified
DLP cinema projector.

3.3 Limitations

Recording HDR video by means of a mirror rig makes it possible to capture a dynamic

range that single sensor cameras will probably only be capable to capture in the future.

However, using a mirror rig comes along with limitations. The handling of the fully

rigged recording device is very limited, as it weights about six times more than a single

digital film camera. In addition, it has to be kept wired to a recording unit. Therefore,

the rig cannot be placed as flexibly as a single camcorder.

Due to the large mirror, the camera rig suffers from stray light and lens flares. Even

if these could be reduced using a mirror with a higher-grade coating, stray light and

lens flares will always be more severe compared to a single camera due to the much

bigger mirror matte box.

The mirror also results in double contours visible in the highlight-protecting pass of

the two long shots ‘Poker’ or ‘Showgirl 2’. As illustrated in Figure 3.12 a) these double

contours result from a second reflection of the transmitted light rays when leaving the

glass of the mirror in the direction of the lower camera. They could be avoided using a

thinner beam splitter. The double contours for the ‘Showgirl 2’ scene are reduced using

deconvolution but it is preferred to keep some contours in order to prevent the creation
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Figure 3.12: Mirror induced double contours - cause and effect.

of new artifacts originating from deconvolution. The double contours can be observed

in Figure 3.12 b) and the result of the deconvolution is shown in Figure 3.12 c).

Besides the double contours, the mirror also introduces polarizing artifacts. This

means that polarized light, like from the water surface in the ‘Fishing’ shots, or the car

finish in the ‘car’ shots, is split with a different ratio compared to the non-polarized

light from the surrounding. This results in diverging luminance and color between

the different areas in the image depending if they are reconstructed from the lowlight

preserving camera or the highlight preserving camera.

In daylight shots, specular highlights and the sun orb are often clipped because low-

ering the exposure to capture them would have resulted in losing too much detail in

the blacks. While this is not a problem for the intended use of the video data set,

true radiance maps cannot be recovered using a setup consisting of only two motion

picture cameras that are shifted by 4 stops in exposure.

Finally the sensor of the Alexa camera is a rolling shutter sensor. Rolling shutter ar-

tifacts can be observed at very fast motion, for example in frame 97031 from the

‘Fireworks’ scene.
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3.4 Results

The HdM-HDR-2014 video dataset is published and freely available at the project web-

site [72]. Thumbnails and image statistics including luminance quantiles and chro-

maticity plots are presented in Appendix A.

The HdM-HDR-2014 scenes are staged according to common film production tech-

niques. The settings are chosen to present challenges to HDR-presentation such as

bright, saturated colors and brightness changes of different speed and magnitude.

Human faces including high contrast skin-tones, hair and eyes complete the cinematic

settings. As a consequence, the HdM-HDR-2014 test-set can be employed to compare

the rendering of material appearance and colors on different HDR-displays or to eval-

uate temporal video tone mapping operators. Due to the cinematic look and staging,

user studies that rely on image quality assessment by non-specialist viewers can be

conducted without causing irritations due to non-staged reproductions.

Since its publication, the HdM-HDR-2014 dataset has been used in dozens of research

projects. As an example, the MPEG used a subset of scenes for the evaluation of

next generation video coding [70]. The HdM-HDR-2014 data set has also been used

in research on HDR image acquisition [76], to develop and evaluate tone mapping

algorithms [37, 55, 58, 120, 141, 153, 176], compression codecs [56, 57, 82, 107,

119, 123], display technology and metrology [105, 114, 155], image quality assess-

ment [136, 148, 207], metrics for ‘HDRness’ perception [84], gamut extension algo-

rithms [205], visual attention/saliency prediction [12, 49, 50, 149] and to develop

and evaluate new television systems [20, 154].

Within this thesis, the HdM-HDR-2014 data set will be used to visually compare the

HDR and WCG encoding schemes introduced in Chapter 4 and to verify the requanti-

zation algorithm presented in Chapter 5.
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Static WCG and HDR Color Encodings -

‘ICACB’ and ‘ICTCP’

When distributing HDR and WCG video content like the HdM-HDR-2014 video data

set an efficient encoding is needed to keep storage space and bandwidth needs as low

as possible. Therefore it is crucial to find efficient quantization schemes for HDR and

WCG video. As described in Section 2.3.3, luminance encoding for HDR video has been

studied extensively. There also have been multiple proposals for HDR and WCG color

image encoding, summarized in Section 2.4.4. Common to all of these approaches is

a focus on encoding efficiency; they are designed to encode images using a minimum

number of code values without introducing visible quantization artifacts or loss of

image details.

A modern image encoding scheme should not only be optimized for efficient quanti-

zation but should also facilitate downstream image processing steps like color volume

mapping to prevent computationally expensive color space conversions for each step.

Thus, it is desirable to transmit video signals in an encoding color space that is not only

suitable for efficient image encoding, but also for tone mapping and gamut mapping,

often referred to as color volume mapping.

Unlike print media, digital cinema and television distribution did not typically require

color volume mapping in the past because most display devices had a gamut and

77
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dynamic range that matched the encoded signal. Notable exceptions were early LCD

displays that did not cover the complete Rec.709 gamut [94].

Future displays will have a larger variance in covered dynamic range and gamut. One

reason for this is the trend towards mobile viewing, which extends potential ambient

illumination ranging from dark cinema and dim living rooms to bright sunlight for

outside viewing. A second reason is that new display technologies have extended ca-

pabilities. Laser-illuminated projectors [178] are now becoming available and extend

the gamut from DCI-P3 [181] to Rec.2020 [92]. At the same time, major television

networks are investigating how to distribute signals in Rec.2020 color space [156] to

leverage the wider color gamut of emerging display technologies such as OLED [30],
quantum dot displays [127] and already existing multi-primary displays [169, 190].
Thus, there will likely be more variation in device capabilities than ever before. Most

of these new displays and cinema projectors will not feature the full Rec.2020 gamut

or the peak luminance of high dynamic range mastering displays [152]. This means

that mapping between different color volumes will become critically important for

consistent best-possible reproduction of TV and cinema imagery. Figure 4.1 depicts

the full video distribution pipeline for HDR and WCG video.

Encoding 
and Storage Decoding

Tone 
Mapping

and Gamut 
Mapping

DisplayPost-
Production

Trans-
mission

Scope of Current HDR Color Encodings

Scope of the HDR Color Encoding Presented in this Thesis

Figure 4.1: Overview of a typical HDR video distribution pipeline.

In the following sections, the ICACB color space for both high dynamic range and wide

color gamut is introduced. The ICACB color space is co-optimized for encoding effi-

ciency as well as color volume mapping performance. Based on these optimization

results, a second model for HDR color encoding named ICTCP is introduced. In order

to verify the encoding efficiency of the ICACB and ICTCP color spaces, they are com-

pared visually and numerically to current state-of-the-art HDR and WCG quantization

schemes. Finally, the challenges and limitations associated with the ICACB and ICTCP

approaches are discussed.
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This chapter is based on the paper introducing the ICACB color space [73] and the

patent disclosing the introduction of crosstalk in LMS domain [69], which is one of

the fundamental ideas behind the ICTCP color space.

4.1 Research Question

The major goal of image encoding for distribution is to minimize distortions when

images are represented with a given number of digital code words, as well as to find

the number of code values needed to prevent visible quantization artifacts. The

best encoding performance is typically achieved when quantization error is distributed

perceptually even over the color space. To fully avoid visible quantization errors, the

step of one code value should always be below the detection threshold of one JND.

Thus, the more uniform in size the JND ellipsoids are throughout the color space, the

more efficient the encoding is, as there are less code values wasted to encode sub-

JND steps in areas of the color space where JND ellipsoids are larger [113]. This

requirement will be denoted as JND uniformity.

In addition to JND uniformity, a color space for video encoding should decorrelate the

achromatic axis from the chromatic axes to enable color sub-sampling that exploits

the lower contrast sensitivity of the human visual system for high frequency chroma

details as summarized in Section 2.4.1.

Furthermore, a color space used for color volume mapping should be as hue linear

as possible, as observers perceive changes in hue to be more impactful compared to

changes in lightness or chroma. As such, most gamut mapping algorithms either com-

pletely avoid or heavily penalize hue changes. Thus, when mapping is performed

toward the achromatic axis, or when intensity is changed, the color space should not

introduce any hue changes.

As well as maintaining uniformity inside the gamut volume, it is important to consider

sufficiently large bounds to encode the necessary gamut and dynamic range. Rec.2100

gamut [96] is the design goal for the next generation of displays and therefore the

minimum requirement for a modern video encoding space.
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Short-term adaptive processes can expand the required dynamic range for entertain-

ment imaging beyond the steady state adaptation of the human visual system [112].
A consumer study using an HDR research display in a dark viewing environment iden-

tified a dynamic range of 0.005 to 10000 cd/m2 as required to satisfy 90% of the

viewers [40].

Finally, the computational complexity of the transformation from the encoding color

space to device RGB should be as low as possible to allow for mass deployment in

a wide range of devices. Specifically the transformation should minimize computa-

tions in linear light and allow separable operations (i.e. functions of a single compo-

nent rather than multiple components).

4.2 Methods

The goal of this work is to develop color difference encoding models that can be mass

deployed. Hence, an existing encoding scheme is chosen. The main work is to find

the optimal parameters for this model, rather than starting from scratch without any

constraints. The methods introduced here can also be used to optimize other models.

In the following, the color space model will be discussed, the test sets and training

sets will be introduced, as well as the cost functions that are used for the optimization

of the model parameters. Based on the findings of the optimization process, a second

model will be introduced.

4.2.1 Model Derivation

A color space model that follows the processing steps of broadcast video Y′CBCR and

IPT is chosen because these are a very simple models for the human visual system in

daylight vision. Y′CBCR and IPT are introduced in Sections 2.4.2.2 and 2.4.3. The

Y′CBCR and IPT color models first transform from device RGB (RDevice, GDevice and

BDevice) to a defined three-dimensional additive color space, like Rec.709 or Rec.2100

for Y′CBCR and the LMS cone sensitivities for IPT. For the model introduced herein,
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the basis for nonlinear encoding will be called R̄, Ḡ and B̄. The basis change from any

basis like CIE 1931 XYZ or any device RGB to R̄, Ḡ and B̄ can be performed via a lin-

ear transformation M1 shown in Equation (4.1). Subsequently a nonlinear encoding

function f that mimics the relation of retinal illumination to cone response is applied

in Equation (4.2). The third and last step of the Y′CBCR and IPT color models is to

simulate the opponent processing in the retina by calculating one achromatic luma

channel and two color opponent channels - often implemented by means of a second

linear transformation M2 as depicted in Equation (4.3):
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This model is easily invertible and already implemented in professional broadcast de-

vices. In addition, IPT is known for its excellent hue linearity in standard dynamic

range scenarios. The difference between Y′CBCR models and IPT is that in IPT the

nonlinearity is applied to LMS cone fundamentals, rather than RGB primaries, and

IPT uses a different color-differencing matrix compared to Y′CBCR. Both models have

in common that intensity I and luma Y ′ are not necessarily exactly weighted to the

CIE 1924 photopic V (λ) luminosity function [32] for all colors because I and Y ′ are

calculated from nonlinearly encoded primaries instead of the linear representation.

Having chosen a specific model, next the individual parameters of the model have to

be found. First, the nonlinearity function f will be determined by looking only at the

achromatic axis. For Y′CBCR and IPT colors are achromatic, if all nonlinear components

have the same value before applying the decorrelation matrix M2. From f −1(I) = R̄=
Ḡ = B̄ it can be deduced that if the optimal nonlinear encoding for I is known, this

exact function also needs to be applied to R̄, Ḡ and B̄ for the quantization along the

achromatic axis to be maximally efficient. The PQ curve introduced in Section 2.3.3

and Equation (2.10) satisfies this requirement.
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The introduction of PQ as nonlinearity guarantees the quantization to be most efficient

along the achromatic axis. However, the coefficients of matrix M1 and M2 cannot be

directly deduced. Nonetheless, this model suggests some assumptions that lead to the

reduction of free parameters. For matrix M1 the signal range for R̄′ , Ḡ′ and B̄′ should

remain equal to the range of the input RGB, because the nonlinear conversion function

is only defined for zero to ten thousand. Thus, the sum of the coefficients in each row

of matrix M1 must equal one and colors within the Rec.2100 gamut should not result

in negative values. M1 can therefore be reduced from 9 to 6 parameters p1 to p6 as

shown in Equation (4.4):

M1 =







p1 p2 1− p1 − p2

p3 p4 1− p3 − p4

p5 p6 1− p5 − p6






(4.4)

Matrix M2 can also be reduced to six parameters as follows: Intensity I is formed

by the first row, I1 and I2 are the contributions of nonlinearly encoded R̄′ and Ḡ′

to intensity. For peak-white, I = Ḡ′ = B̄′ = R̄′ = 1 is true. Therefore, the sum of

all upper row coefficients must again be 1. Thus, the third coefficient of the first

row is dependent on I1 and I2. The second and third rows of the color differencing

matrix are calculated by subtracting I from B̄′ and R̄′, which mimics the classic color

differencing approach from Y′CBCR or IPT and guarantees the plane spanned by the

chroma axes to be orthogonal to the achromatic axis. The color-differencing matrix is

followed by a free transform in the chroma domain via parameters s1 to s4 as shown

in Equation (4.5). For better visualization, the chroma channels are rotated around

the achromatic axis to make different optimization results comparable:

M2 =
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(4.5)

The resulting intensity value will be called I , and the two resulting color difference

channels CA and CB. This naming is meant to reference the IPT and Y′CBCR models

that inspired the ICACB model.

Now that a color encoding model and the nonlinearity function are determined, the

matrix parameters p1 to p6, I1, I2 and s1 to s4 have to be found using optimization be-
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cause, unlike the nonlinearity function, they cannot be directly deduced. The follow-

ing paragraphs describe the datasets and respective cost functions used to optimize the

12 parameters for hue linearity, isoluminance and uniform minimum discriminability.

4.2.2 Datasets for Optimization

Most existing datasets for hue linearity, isoluminance and discriminability are limited

to standard dynamic range and a much smaller gamut compared to Rec.2100. Thus,

wide color gamut datasets have to be acquired for optimization. These new data sets

are used as training sets while existing standard dynamic range and limited gamut data

sets serve as verification sets. The user study set-up for the acquisition of the new data

sets is kept as close as possible to existing studies to be able to verify the results by

using the overlapping dynamic range and gamut regions between the existing data

sets and the newly acquired data sets.

4.2.2.1 Isoluminance Dataset

Equiluminant color pairs are acquired using the negative-face method [106]. The

participants of the study are asked to adjust the luminance of the gray part of a duo-

tone image showing a face that is lit with a directional light at 45◦ from the top.

Figure 4.2 a) and 4.2 b) show the study image for two possible user adjustments of

the same color patch. In Figure 4.2 a) the achromatic part of the duo-tone image is

adjusted to be brighter compared to the red reference color. This renders the left face in

a correct way while the right face is not recognized as a face because the bright lit parts

a) b)

Figure 4.2: Image used for the isoluminance user study. Photo authored by
Timo Kunkel.
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are rendered darker compared to shadowed areas. When darkening the achromatic

area of the study image as shown in Figure 4.2 b) the left face gets rendered uncanny

and the right face is rendered correctly. Kindlmann et al. show that the threshold area

in which the face ‘flips’ is very small and thus allows one to determine isoluminant

color pairs very fast compared to traditional flicker studies [106].

The projection setup for the isoluminance study is depicted in Figure 4.3. A 2048

by 1080 pixel DLP-cinema projector is equipped with modified notch-filters to allow

sampling a color gamut close to Rec.2100. The spectral power distribution and gamut

of this projector are depicted in Figure 3.11 in the preceding chapter. The projected

image size is adjusted to a diagonal of 50” to reach a peak white of 2000 cd/m2 on a

50” ‘Da-lite HD Progressive" [139] vinyl screen with a gain of 0.9. The participant is

seated 2 m away from the screen to cover a 30◦ field of view for the projection and 20◦

for the actual image excluding an achromatic padding. For each color, the achromatic

part of the image is matched using a QUEST [200] procedure. After each matching

task, both colors, the reference color and the matched achromatic color are displayed

fullscreen and measured via an PR-740 spectroradiometer [166] to avoid errors by

color drift of the Xenon lamp driven projector. Nine participants with normal color

vision performed this study.

Dark Surround

Diffuse White Screen
with Dark Frame

Projector

Spectro-
radiometer

Study
Participant

Figure 4.3: Study setup for deriving equiluminant color pairs and colors with
the same hue.
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4.2.2.2 Hue Linearity Dataset

Constant hue lines are acquired in a user study that follows the setup of Hung and

Berns [85] with the exclusion of the discrimination field but keeping the gray back-

ground and bright border for anchoring as shown in Figure 4.4. The mid-row is user

Lighter Frame
for Anchoring

User Can Adjust
Hue in Middle Row

Equiluminant Achro-
matic Reference

Saturated Refe-
rence Color

Figure 4.4: Visual pattern of the hue linearity user study.

adjustable in hue where the goal is to adjust the middle patch to have the same per-

ceived hue as the bottom reference. The luminance of all colored patches was kept

constant while the difference in hue is reduced via a staircase method. The projec-

tion device and study setup is the same as for the isoluminance study as shown in

Figures 3.11 and 4.3. Three users that have previously passed the 38 plate Ishihara

test [97] adjusted four levels of saturation for 6 hues and two luminance levels. The re-

sults for stimuli inside Rec.709 gamut are close to those from Hung and Berns’ original

results [85] but the new data extends to the full Rec.2020 gamut and to 2000 cd/m2

peak white.

4.2.2.3 JND Dataset

Threshold data for the detection criteria (JND) is acquired using a Dolby PRM4200

professional reference monitor with a black level of 0.005 cd/m2, a peak white of

600 cd/m2 and P3 gamut showing a step-edge pattern and using method of adjustment

on the edge amplitude. The pattern is shown in Figure 4.5. The adjustment axes
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Darker Achromatic
Background

User Can Adjust
Three Directions in

the Color Space,
Each by + and -

Reference Color

Figure 4.5: Visual pattern of the JND user study.

used are the P3 RGB primaries and the modelfest axes [204]. For verification, the

findings of this study are compared with the JND ellipses of MacAdam [129] and

Wright [203] as well as to the Barten Model (adapted for step edges) and the contrast

sensitivity function measurements for extended luminance ranges by Kim et al. [103].
The results of the study aligned well with these previous results, but newer studies

often report smaller chromatic differences which may be due to the high precision

display equipment available today compared to the bipartite 2 degree split field used

in the 1940s studies by Wright and MacAdam. The viewing distance is 1.6 m and the

screen diagonal 42", resulting in a 30◦ field of view. As the colored background spans

50 % of the image, the field of view for the chromatic area is 15◦ and one square spans

a 2◦ field of view.

Dark Surround

HDR Monitor Study
Participant

Figure 4.6: Study setup for measuring JNDs.



4.2 Methods 87

4.2.3 Cost Functions for Optimization

Cost functions have to be defined for the optimization of the 12 matrix parameters

with the respective datasets. The cost functions are designed as simple as possible

because it is found that the selection of the dataset and the weighting of the dataset

samples have a much stronger influence on the results compared to varying between

different reasonable cost functions.

The isoluminance cost function JIL (Equation (4.6)) is defined as the mean squared

difference between the predicted intensity of n color pairs I(i,1) and I(i,2) that have been

adjusted by human observers to have the same perceived luminance. The isolumi-

nance cost function is calculated in the nonlinearly encoded domain of the respective

color space:

JIL =
1
n

n
∑

i=1

(Ii,1 − Ii,2)
2 (4.6)

The hue linearity cost function JHL (Equations (4.7 to 4.9)) is defined as the differ-

ence between predicted hue hi, j of each color in the hue linearity data set and the mean

hue of all samples j from the same tuple that have been adjusted by human observers

to have the same perceived hue. Index i changes for n different hues and j changes

for the perceptually same hue, but m differently saturated patches. The hue difference

cost is weighted by the saturation si, j of each color to prevent the over amplification of

small hue changes in pastel tones that result in large changes of numerical hue angle.

This weighted hue difference is also normalized by the average saturation of all hues

in the dataset to normalize between different data sets. The final hue linearity cost

function is calculated as the mean squared weighted difference in hue:

hi, j = atan2(Ca,i, j, Cb,i, j) (4.7)

si, j =
Ç

C2
a,i, j + C2

b,i, j (4.8)

JHL =
1

nm

n
∑

i=1

m
∑

j=1









si, j

hi, j −
1
m

m
∑

w=1
hi,w

1
nm

n
∑

u=1

m
∑

v=1
su,v









2

(4.9)
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On its own, this hue linearity cost function would always end up at the trivial solu-

tion of projecting to a plane spanned by I and one color vector. The JND uniformity

cost function (JJND) introduced in the next paragraph guarantees the color space will

be near to uniform in JND size at all stages of optimization (except for the first few

iterations). Thus, the hue linearity cost function from Equation (4.9) works without

additional constraints.

The JND uniformity cost function JJND (Equation (4.10)) first performs a Singular

Value Decomposition (SVD) on the three ellipsoid half axes qi, j to ensure the half

axes are orthogonal after transformation to the current optimization stage of the color

space. After performing SVD, the sum of the squared differences between 1 and the

length of the individual half axes (normalized by the average length of all half axes) is

calculated. This is equivalent to calculating the variance of the length of all half-axes

with SVD and normalization applied to the half-axes before:

JJN D =
1

3n

n
∑

i=1

3
∑

j=1









�

�qi, j

�

�

1
3n

n
∑

u=1

3
∑

v=1

�

�qu,v

�

�

− 1









2

(4.10)

Figure 4.7 illustrates the half axes representation of a two-dimensional ellipse and

the effect of singular value decomposition. After transformation to the current color

space the length of the half axes only represents the maximum eccentricity of the

ellipse when SVD is applied. Figure 4.7 a) shows a hypothetical JND ellipse while Fig-

ure 4.7 b) shows the result after a linear transformation. To determine the eccentricity

of the ellipse, applying SVD to the half axes results in Figure 4.7 c) where the ratio of

length between the two half axes is a measure for eccentricity again.

Opposed to Figure 4.7 a typical color space conversion is a nonlinear transforma-

tion. However, most JND ellipsoids are very small so that the error introduced by

the nonlinearity is acceptable for the optimization. The half axes approach is com-

pared to representing JND ellipsoids as 10000 points that are randomly distributed

on the ellipsoid surface. Transferring these points with the corresponding color space

transformations and then fitting an ellipsoid again for optimization leads to very close

results. As an example, for the ellipsoids used in the numerical verification of JND

uniformity and for the final state of optimization in ICACB, the maximum distance of
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Figure 4.7: Example of JND ellipse representation as half axes and the effect
of SVD after transformation.

the individual points on the ellipsoid surface to the ellipsoid surface defined by the half

axes approximation is below 4% of the mean half axes length and the median error

is below 0.3% of the mean half axes length. Only converting the half axes compared

to converting 10000 points on the ellipsoid surface reduces the time for optimization

by more than two orders of magnitude without significantly changing the outcome of

the optimization. Hence, for the final optimization, only the elipsoid center and three

points on the ellipsoid surface representing the half axes are transformed.

The total cost function JTOTAL Equation (4.11) is defined as the weighted sum of

all three cost functions JIL, JHL and JJND. Weighting by wIL, wHL and wJND controls

the trade-off between partly contradicting requirements like hue linearity and JND

uniformity:

JTOTAL = JILwIL + JHLwHL + JJNDwJND (4.11)

4.2.4 Optimization Process

The optimization process proves to be robust. When all 12 parameters are initialized

with uniformly distributed random values from their respective valid ranges, about
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80% of the optimization runs converge to the same result (if rotation around the

achromatic axis is ignored).

As an example, Figure 4.8 shows the optimization results when changing the weighting

of the cost function from hue linearity to JND uniformity. The left column shows the

MacAdam JND ellipses for observer PGN. In a color space that is perfectly uniform with

respect to JND discriminability for this observer, and given no noise in the acquisition

of the data, all ellipses would be rendered as circles and would have the same size. The

right column shows one sample from the new hue linearity data set for observer JFR

at the respective luminance of near Rec.2100 primaries for 1750 cd/m2 peak white. A

perfectly hue linear space would result in straight lines.

As shown in Figure 4.8 a) and b) when weighting the hue linearity cost function over

JND uniformity, the resulting color space is relatively hue linear, but the lowest JND

ellipse in the blue area is squeezed. When putting a stronger weight on JND uni-

formity like in the bottom row of Figure 4.8 e) and f), the JND ellipses are rendered

more uniform relative to Figure 4.8 a) and b), especially in the blue areas, while hue

nonlinearities can be observed in the blue areas. These optimization results indicate

that having uniform JND ellipsoids in the blue areas and retaining hue linearity at the

same time is not possible for the ICACB model. Lissner and Urban [122] suggest this

issue is a fundamental problem for any color space model when trying to co-optimize

for both JND uniformity and hue linearity.

4.2.5 Parameter Derivation for the ICACB Model

The goal of the optimization process is to get one model as result. Hence, the weights

wIL, wHL and wJND have to be determined. Changing the weight of the isoluminance

cost function wIL does not yield in strong variations. For trading off hue linearity and

JND uniformity, it is decided to go with the candidate that offers the best hue linearity

with a constraint on the concavity in the blue areas. This concavity is limited so that a

projection of each color within Rec.2100 color space to the gray axis always stays inside

the Rec.2100 gamut volume. This constraint is introduced to allow the application of

hue-preserving gamut mapping algorithms without the risk to map in-gamut colors

to out-of-gamut colors. This combination of optimization for hue-linearity and the
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Figure 4.8: Trading JND uniformity for hue linearity in ICACB optimization.
The JND ellipsoids are the MacAdam ellipses, viewer PGN. The hue linear lines
are from the hue-linearity study, viewer JFR.



92 Chapter 4. Static WCG and HDR Color Encodings - ‘ICACB’ and ‘ICTCP’

constraint on concavity in the blue areas yields a compromise between hue linearity

and JND uniformity.

The conversion formula from CIE 1931 XYZ 1931 to the ICACB model is given in Equa-

tions (4.12) to (4.14). Valid input values include all XYZ values from a color space

spanned by the Rec.2100 primaries and D65 10000 cd/m2 peak white (X = 9505, Y =
10000 and Z = 10891). fPQ is introduced in Chapter 2, Equation (2.10):







R̄

Ḡ

B̄






=







0.37613 0.70431 −0.05675

−0.21649 1.14744 0.05356

0.02567 0.16713 0.74235













X
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(4.12)

R̄′ = fPQ(R̄) Ḡ′ = fPQ(Ḡ) B̄′ = fPQ(B̄) (4.13)
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0.3605 1.1499 −1.5105
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Ḡ′
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(4.14)

4.2.6 Parameter Derivation for the ICTCP Model

When comparing the results from optimizing the ICACB parameters with the original

IPT parameters there are three main differences: The basis for nonlinear coding (R̄,

Ḡ and B̄) is different compared to IPT’s LMS, the nonlinearity f is PQ opposed to

IPT’s gamma function and the contributions of the nonlinear coded components R̄′,

Ḡ′ to intensity I are roughly 0.5 while B̄′ has no significant contribution to intensity.

Compared to ICACB, the approach for ICTCP is to apply these learnings from the opti-

mization process of ICACB back to the original IPT model instead of directly optimizing

the parameters.

4.2.6.1 Minimal Contribution of the S-Cone to Luminance

The original IPT color space uses 0.4 : 0.4 : 0.2 as contributions of L′M ′S′ to intensity.

Vision science literature indicates that the S-cone’s contribution to luminance is only

very little [194, 195] or none [59]. The optimization results in Section 4.2.5 are in line
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with these findings assigning the S-cone (B̄) virtually no contribution to luminance.

While the weighting of L to M are said to be 2:1 [195], the ICACB optimization process

yields about equal contributions of R̄ and Ḡ to luminance. This may be a result from the

crosstalk term between L and M, or a result from the limitations of the model. When

manually constraining the L and M contributions to I to 2:1 during the optimization

process, changes to the color space and the metrics are only minor, because of the

large overlap between the L and M curves.

As a consequence the parameters I1 and I2 from Equation (4.5) are set to 0.5 each for

the ICTCP model.

4.2.6.2 Crosstalk in LMS-Domain

The second observation is made on the basis for nonlinear encoding R̄, Ḡ and B̄. To

illustrate the different bases for ICACB and IPT, ICACB’s matrix M1 will be split into

IPT’s XYZ-to-LMS matrix from Equation (2.26):







L

M

S






=







0.4002 0.7075 −0.0807

−0.2280 1.1500 0.0612

0.0 0.0 0.9184













X

Y

Z






(2.26)

and the remainder:
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Ḡ

B̄






=













1 0 0

0 1 0

0 0 1






+







−0.0457 0.0254 0.0204

0.0204 −0.0148 −0.0056

0.1088 0.0784 −0.1874



















L

M

S






(4.15)

The splitting of the matrix M1 shown in Equation (4.15) illustrates that the ICACB

optimization yields values close to IPT’s original LMS values plus a small crosstalk

term. Consequently, the primaries for ICACB: R̄, Ḡ and B̄ can be seen as LMS cone

fundamentals plus crosstalk.

Figure 4.9 illustrates the effect of the crosstalk term in linear LMS domain. It com-

presses the chroma plane depending on the saturation of the color. Hence, looking at

the JND ellipsoids in Figure 4.9 a), c) and e) it can be observed that the tonal resolu-
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Figure 4.9: Influence of crosstalk in linear LMS domain on gamut shape,
JND elipsoids and hue linear lines. The JND ellipses are 10 times amplified
examples from the JND study, participant JFR. The hue linear lines are one
sample from the new hue linearity data set for observer JFR at the respective
luminance of near Rec.2100 primaries for 1750 cd/m2 peak white.
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tion of the color difference channels stays about the same for achromatic colors, while

saturated colors are compressed with increasing addition of crosstalk in linear LMS

domain. This results in a more uniform quantization along the chroma planes. Fig-

ures 4.9 b), d) and f) show that the introduction of a limited amount of crosstalk (4 %)

improves hue linearity in the red areas, while more crosstalk (10 %) worsens hue lin-

earity in the blue areas. The ICTCP model will inherit the 4 % crosstalk as illustrated

in Figure 4.9 c) and d).

Figure 4.10 gives a numerical example for the inefficiency of using grayscale encoding

functions like PQ for encoding color primaries like RGB or LMS without crosstalk. For

RGB triples near the achromatic axis as shown in Figures 4.10 a) and 4.10 b) adding

one 10-bit code-value to the green channel results in luminance and color changes

around the visual threshold. However, for saturated colors like in Figure 4.10 c) the

change of one 10-bit code value in the green channel is multiple orders of magnitude

below the detection threshold because the human visual system is adapted to a much

higher luminance level resulting in over-quantization of saturated colors. The intro-

duction of crosstalk in linear domain alleviates this issue because the values of the

three color channels are evened out for saturated colors.
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Figure 4.10: Example of JND non-uniformity when encoding Rec.2100 RGB
primaries with PQ.



96 Chapter 4. Static WCG and HDR Color Encodings - ‘ICACB’ and ‘ICTCP’

The resulting spectral sensitivity for the ICACB and ICTCP color spaces is compared to

LMS in Figure 4.11. A second interpretation of crosstalk in linear LMS domain is that
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Figure 4.11: Spectral sensitivity of of the ICACB and ICTCP primaries R̄, Ḡ and
B̄ compared to the LMS cone fundamentals.

it compensates for the fact that the PQ nonlinearity was developed using stimuli near

the achromatic axis where L, M and S are approximately the same relative to D65

white. Applying the PQ nonlinearity on each cone separately assumes infinite indi-

vidual LMS gain (chromatic adaptation). However, chromatic adaptation is limited

compared to lightness adaptation [108]. The crosstalk term can also be thought as a

different implementation of the noise term in Guth’s ATD model [78] or the limitation

in chromatic adaptation pL,M ,S in Fairchild’s chromatic adaptation model [60] from

1991.

From a third perspective, crosstalk can be seen as a step towards calculating color

difference channels from linear primaries as done in the CIE 1931 xy and CIE 1976 u′v′

models. When theoretically introducing near 1
3 crosstalk, followed by large coefficients

in the second and third row of M2 the chroma plane converges towards chromaticity

calculated from a linear basis.

In conclusion, applying crosstalk to the encoding primaries can be used to optimize the

coding efficiency of static color encoding models. Based on these findings a constant

4 % amount of crosstalk between all three linear LMS channels from Equation (4.16)

is added to ICTCP in comparison to the original LMS primaries of IPT.
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4.2.6.3 Full ICTCP Model

Besides the addition of 4 % crosstalk in linear LMS domain and setting the contribu-

tions of L, M and S to intensitiy I to 0.5 : 0.5 : 0, the original color differencing matrix

of IPT is modified by rotating typical skintones to align with their hue angle in SDR

Y′CBCR for better backwards compatibility [48]. Also the CT color difference channel

is multiplied by 1.4 to use the full code space of −0.5 to 0.5 for both chroma chan-

nels [48] when encoding Rec.2100 gamut. The resulting color differencing matrix is

written in Equation (4.18). ICTCP is standardized in ITU Rec.2100 [96] as an alterna-

tive color differencing scheme to Y′CBCR.
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(4.16)

R̄′ = fPQ(R̄) Ḡ′ = fPQ(Ḡ) B̄′ = fPQ(B̄) (4.17)
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(4.18)

4.3 Results

In the following section the ICACB and ICTCP models are compared visually and

numerically to state-of-the-art WCG and HDR encodings Y′′u′′v′′, Rec.2100 HLG

and Rec.2100 PQ. Rec.2100 HLG and Rec.2100 PQ are standardized by the ITU in

Rec.2100 [96] for video coding. Y′′u′′v′′ is proposed by Poynton et al. on behalf of

Philips [161]. These state of the art encodings are further described in Section 2.4.4.

First, a visual comparison of JND uniformity, hue linearity and isoluminance if per-

formed by plotting JND ellipsoids, hue linear lines and by comparing the achromatic

channel of the respective color spaces to CIE 1931 Y. This is followed by numeri-

cally comparing the encoding performance of the ICACB and ICTCP models to Y′′u′′v′′,

Rec.2100 HLG and Rec.2100 PQ via a new metric for comparing color space quanti-
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zation efficiency. In addition, isoluminance will be compared by rank order correla-

tion.

4.3.1 Visual Comparison

In this section, JND uniformity, hue linearity and isoluminance are compared by vi-

sualization of the reference data sets. Figure 4.12 and 4.13 both show the Rec.2100

1000 cd/m2 peak white gamut hull in an orthographic view along the achromatic axis.

For the visual verification of JND uniformity, all chromaticity ellipses from MacAdam’s

PGN observer [129] that are located inside the Rec.2100 gamut or very near to the

gamut boundary are displayed in Figure 4.12. These JND ellipses are amplified by a

factor of 10. The more regular the ellipses are in size the more uniform the space is

with regard to JNDs. Y′′u′′v′′, ICACB and ICTCP render the minimum discriminability

ellipses more uniform than Rec.2100 HLG and Rec.2100 PQ.

In Figure 4.13 the Hung and Berns hue linearity data set is overlaid to the Rec.2100

1000 cd/m2 peak white gamut hull. Y′′u′′v′′, Rec.2100 HLG, ICACB and ICTCP perform

better compared to Rec.2100 PQ for the luminance of the Hung and Berns data set.

According to the wide color gamut hue linearity data the hue curvature for Rec.2100

PQ and Rec.2100 HLG intensifies for higher luminance, especially in the blue areas

while hue linearity for Y′′u′′v′′, ICACB and ICTCP stays about the same.

For comparison of isoluminance Figure 4.14 shows CIE 1931 Y luminance plotted

versus the luma/intensity value of the respective color space for 10000 random colors

inside the Rec.2100 1000 cd/m2 peak white gamut. All axes are converted to the PQ

domain. Rec.2100 HLG and Rec.2100 PQ represent saturated colors with a large offset

in luminance. For saturated blues, the error between luma and luminance in these two

color spaces can be multiple f-stops. Y′′u′′v′′ does not introduce isoluminance errors

by design because Y′′ is calculated from linear RGB. ICACB and ICTCP only introduce

low isoluminance errors below a quarter of an f-stop for ICACB and below one f-stop

for ICTCP.

In addition to the visual and numerical analysis, color grading as well as gamut map-

ping and tone mapping are performed using the wide gamut scenes from the HdM-
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Figure 4.12: Comparison of JND uniformity between current state-of-the-art
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Figure 4.13: Comparison of hue linearity between current state-of-the-art
HDR and WCG video encodings and ICACB and ICTCP.
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Figure 4.14: Comparison of isoluminance between current state-of-the-art
HDR and WCG video encodings and ICACB and ICTCP.
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HDR-2014 dataset [71] as well as a custom database of wide color gamut and high

dynamic range image sequences. As an example, Figure 4.15 compares the effect of

desaturation in the investigated color spaces. Desaturation is a typical operator hap-

pening in color grading, gamut mapping and tone mapping. The example image is

frame 962 of the ‘Carousel Fireworks 02’ scene from the reconstructed scene radi-

ance. Desaturation is rendered as orthogonal projection of the chroma values to the

achromatic axis in the respective color space. The rendering from high dynamic range

and wide color gamut to the SDR sRGB gamut of this document is performed via the

‘ARRI Look File 2’ rendering transform available on-line from the ARRI website [53].
As expected from the comparison of isoluminance in Figure 4.14, Rec.2100 HLG and

Rec.2100 PQ (Figure 4.15 c) and d)) show visible artifacts, rendering saturated blue,

magenta and red areas too dark in the desaturated image. The luminance change of

ICACB and ICTCP compared to CIE 1931 Y as used in Y′′u′′v′′ can only be seen when

toggling between the reference and the versions desaturated in ICACB or ICTCP.

To illustrate the gamut mapping performance of Y′′u′′v′′, Rec.2100 HLG, Rec.2100

PQ, ICACB and ICTCP, Figure 4.16 shows frame 96163 of the ‘Carousel Fireworks’ se-

quence from the color graded version of the HdM-HDR-2014 data set. The Rec.2100

0-4000 cd/m2 gamut of the original color graded image is mapped to a 0-4000 cd/m2

RGB gamut with Rec.709 primaries. To fit into the luminance range of the SDR sRGB

gamut of this thesis, the peak white of the mapped images is linearly scaled to the

maximum luminance of this document. ‘Weighted minimum delta E’ [101] is used

as an example gamut mapping algorithm using weights of 2, 1 and 4 on change of

luma, chroma and hue-angle. These weights put a higher penalty on hue changes

and lower the penalty on chroma differences. Figure 4.16 a) is not gamut mapped

but clipped in Rec.709 RGB domain. The clipping algorithm shows hue changes from

cyan green to pure green. However it is best in retaining saturation. Gamut mapping

in Rec.2100 HLG or Rec.2100 PQ domain using the ‘Weighted minimum delta E’ al-

gorithm as shown in Figures 4.16 c) and d) introduces hue changes and luminance

discontinuities. Y′′u′′v′′, ICACB and ICTCP (Figure 4.16 b), e) and f)) perform robust

without showing typical problems like hue nonlinearities or luminance errors.
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Figure 4.15: Comparison of applying the desaturation operator in current
state-of-the-art HDR and WCG video encodings and ICACB and ICTCP. Best
viewed on a color accurate sRGB monitor in a dark environment.
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the-art HDR and WCG video encodings and ICACB and ICTCP. Best viewed on
a color accurate sRGB monitor in a dark environment.
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4.3.2 Numerical Comparison

In this section the ICACB and ICTCP models are compared numerically to state-of-the-

art WCG and HDR encodings Y′′u′′v′′, Rec.2100 HLG and Rec.2100 PQ. The used ref-

erence data sets for numerical comparison are existing datasets to keep the training

data for ICACB (the data sets acquired herein as described in Section 4.2.2) separate

from the data sets for verification.

For the numerical comparison of the coding efficiency, JND ellipsoids are built at dif-

ferent luminance levels by replicating the MacAdam PGN ellipses [129] to 0.02, 0.2,

2, 40 and 200 cd/m2 and scaling them by the maximum color contrast sensitivity func-

tion findings from Kim et al. [103] in the chromaticity domain relative to the results

at 40 cd/m2 from the corrected version of this paper. The altered version is available

from co-author Mantiuk’s website [104].

Encoding efficiency can be calculated by dividing the needed range per axis by

the largest allowed quantization step below the visibility threshold. Rec.2100 with

1000 cd/m2 peak white gamut is chosen to determine the minimum and the maxi-

mum expected values per axis. In contrast to the minimum and maximum value per

axis, the largest visually lossless quantization step cannot be separately determined

per axis because the needed quantization along one axis depends on the quantization

along the other axes. Figure 4.17 illustrates this by showing two visually lossless quan-

tization step sizes for the same JND ellipse.
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Ax
is
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Ellipse Center

Ellipse
Largest Axis Aligned
Box Inside Ellipse
1 Code Value Steps

Combinations of 
1 Code Value Steps

a) b)

Figure 4.17: Illustration of two different tonal resolutions both resulting in
visually lossless quantization for the same JND ellipse.
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In Figure 4.17 a) the coarse quantization along axis 2 demands a finer quantization

along axis 1 if all combinations of one code value should stay below the visibility

threshold while in Figure 4.17 b) the fine quantization along axis 2 relaxes the tonal

resolution requirements along axis 1. To guarantee any quantization error stays below

the detection threshold, every combination of changes of one code value along all axes

must fall inside all JND ellipsoids.

With 3 dimensions used for typical color difference encodings this translates into

higher quantization needs per axis compared to only looking at one axis. As an ex-

ample, Figure 4.18 shows a uniform sphere and the largest axis aligned box that fits

inside this sphere. For this example sphere, the maximum quantization along each

axis that is below one JND for all 1 code value step combinations is half the size of the

axis aligned box inside the ellipsoid. For this example of a sphere it is 1p
3

the radius

of the sphere. It can be concluded that when measuring minimum quantization per

axis, the needed tonal resolution for the full three dimensional color space is larger

compared to the quantization needed along each separate axis.

JND Ellipsoid
Largest Axis Aligned
Box Inside Ellipsoid

1
-1

0-1
0

0

1 -1

1

Axis 1
Axis 2
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Figure 4.18: Deriving the largest possible visually lossless quantization step
from JND ellipsoids by scaling the axis aligned bounding box to fit inside the
JND ellipsoid.

To determine the amount of quantization steps needed for visually lossless encoding

of the color spaces compared herein, the axis-aligned bounding boxes of each ellipsoid

are scaled to fit inside the respective ellipsoid. The needed quantization step is then

determined by the minimum of half the length of all boxes along each of the three
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axes. Different metrics can yield different results, for example trading quantization

efficiency along the achromatic axis in favor of needed code values for chroma (or vice

versa). Table 4.1 compares the encoding efficiency for the investigated color spaces

using the scaled bounding box metric as described above. Fewer needed code values

indicate a more efficient encoding.

Table 4.1: Comparison of color space encoding efficiency. Minimum number
of code values needed for encoding Rec.2100 1000 cd/m2 peak white gamut.

Code Values Needed to Encode:
Color Space Luma/Intensity Color Difference 1 Color Difference 2

Y′′u′′v′′ Y′′: 2370 u′′: 1829 v′′: 942
Rec.2100 HLG Y′: 7009 CB: 9432 CR: 7554

Rec.2100 PQ Y′: 2816 CB: 3526 CR: 3526
ICACB I: 2147 CA: 1621 CB: 832
ICTCP I: 1857 CT: 1171 CP: 1843

Due to the PQ nonlinearity on the achromatic axis, Y′′u′′v′′, ICACB and ICTCP provide

the most efficient luma encoding. Y′′u′′v′′, ICACB and ICTCP also need less code values

for chroma compared to the other color spaces investigated here. The high number

of code values needed to encode the chroma channels of Rec.2100 PQ results from

the skewed JND ellipsoids for saturated colors compared to the small JND ellipsoids

near the achromatic axis. The high amount of code values for Rec.2100 HLG is due

to the comparatively coarse quantization of the square-root transfer curve in the dark

areas of the Rec.2100 HLG color space. Y′′u′′v′′, ICACB and ICTCP need 11 to 12 bits

for visually lossless encoding while Rec.2100 PQ requires 12 bits and Rec.2100 HLG

needs 13 to 14 bits of tonal resolution per channel for visually lossless encoding of

any content.

As a metric for isoluminance, Table 4.2 shows the Spearman rank order correlation

for 10000 random colors within Rec.2100 1000 cd/m2 peak white gamut. As already

observed in Figure 4.14 Rec.2100 PQ perfomes worst, followed by Rec.2100 HLG.

Y′′u′′v′′ does not introduce any isoluminance error by design and ICACB and ICTCP

represent colors with an isoluminance error of about a quarter and half an f-stop. An

evaluation of compression efficiency of the ICTCP color space has been performed,

using the HdM-HDR-2014 data set introduced in Chapter 3. It is shown that ICACB
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Table 4.2: Comparison of color space isolumance. Spearman rank order cor-
relation between CIE 1931 luminance and luma of the respective color space
for 10000 random colors within Rec.2100 1000 cd/m2 peak white gamut.

Spearman Rank Maximum Luminance
Color Space Order Correlation Error in F-Stops

Y′′u′′v′′ 1 0
Rec.2100 HLG 0.9396 5.41

Rec.2100 PQ 0.8721 10.06
ICACB 0.9994 0.17
ICTCP 0.9971 0.54

and ICTCP also enhance coding efficiency in scenarios beyond baseband encoding of

uncompressed image streams [125, 206].

4.4 Discussion and Outlook

The performance of the proposed ICACB and ICTCP color spaces for encoding high dy-

namic range and wide gamut video and performing color volume mapping is promis-

ing [162]. Coding efficiency is better compared to approaches with the same com-

putational complexity like Rec.2100 HLG and Rec.2100 PQ and on the same level

with Y′′u′′v′′, which has a higher computational complexity. Hue linearity is improved

compared to all other approaches and isoluminance is close to constant luminance like

employed in Y′′u′′v′′.

Future display systems may feature an extended gamut compared to Rec.2100. Fig-

ure 4.19 shows the gamut of visible colors (between 380 and 780nm), below 56.6 w
sr cm2

and below 10000 cd/m2 in Y′′u′′v′′, Rec.2100 HLG, Rec.2100 PQ, ICACB and ICTCP. It

can be observed that Y′′u′′v′′, ICACB and ICTCP provide an efficient encoding for the

full spectral gamut limited to a certain luminance and energy. This makes these color

spaces future proof. Still, JND uniformity, isoluminance and hue linearity beyond the

Rec.2100 gamut have to be verified. Also the resulting code ranges for the full spectral

gamut have to be implemented correctly.



4.4 Discussion and Outlook 109

All Visible Colors Be-
tween 380 and 780nm,
Below 56.6 w/sr/cm2 and
Below 10000 cd/m2

Rec.2100 Gamut Hull

ICACB

-0.2 0 0.2 0.4 0.6
CA

-0.6

-0.4

-0.2

0

0.2

C
B

ICTCP

-0.4 -0.2 0 0.2 0.4 0.6
CT

-0.2

0

0.2

0.4

C
P

Rec.2100 HLG

-0.8 -0.4 0 0.4 0.8 1.2
CB

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

C
R

Rec.2100 PQ

-0.9 -0.6 -0.3 0 0.3 0.6 0.9
CB

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

C
R

Y''u''v''

-0.2 -0.1 0 0.1 0.2 0.3 0.4
u''

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

v'
'

Figure 4.19: Encoding color gamuts beyond color spaces spanned by three
physically realizable primaries. Rec.2100 10000 cd/m2 gamut is compared to
encoding all visible colors (between 380 and 780nm), below 56.6 w

sr cm2 and
below 10000 cd/m2.
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While the ICACB color space and its sibling ICTCP improve upon the existing proposals

for high dynamic range video encoding presented in Chapter 2.4.4, still there is room

for improvement. It would be desirable to evaluate and eventually optimize the trans-

formation matrices again with wider data sets for isoluminance, JND uniformity and

hue linearity. After the publication of the original paper [73] Safdar et al. optimized

the same model using additional datasets [170]. Still no JND data sets that span a

wide color gamut near to the spectral locus are available except for the step-edge

data from Wright [203]. Thus, the minimum JND study should be repeated for the

full spectral gamut using a more robust psychometric method such as two-alternative

forced choice instead of the method of adjustment, that was utilized in the minimum

JND study herein.

A limitation of the ICACB and ICTCP color spaces is their optimization on noiseless

signals. Camera captured images are subject to photon shot noise. This noise masks

quantization artifacts and therefore reduces bit-depth requirements for dark parts of

the image. In the following chapter the implications of noise and texture on the needed

tonal resolution of the I channel of ICACB and ICTCP are studied. Ideally, the methods

presented in the next chapter should be part of the color space definition to eliminate

these separate post-processing steps.



Chapter 5
Content Aware Quantization Scheme -

‘CAQ’

As presented in Chapter 4 visually lossless HDR video encoding for noiseless content

needs more than 10 bits of tonal resolution. Still current video distribution pipelines

and storage formats are limited to 10 bits in their mainstream flavors. In this chapter, a

novel content aware quantization scheme will be introduced. It can be used for reduc-

ing quantization needs by exploiting noise and texture inherent to most images. This

chapter is based on the paper introducing the Content Aware Quantization scheme

(CAQ) [75] and the related patent [74].

While advances in image quality previously focused on increasing spatial resolu-

tion [94], the focus nowadays shifts to extending dynamic range [185], tonal reso-

lution (i.e., bit-depth) [128] and color gamut [92]. There has been extensive research

on the most efficient quantization scheme for encoding HDR baseband signals [151].
As described in Section 2.3.3.3 the resulting PQ encoding curve [184] needs 12 bits

of tonal resolution to quantize any content in its 0-10000 cd/m2 range without intro-

ducing visible quantization artifacts. The bit-depth and tonal nonlinearity of PQ are

determined by threshold visibility criteria and the most demanding imagery (low gra-

dients having zero noise and no texture). Current monitors can reproduce this tonal

resolution of 12 bits by using a 10-bit LCD panel with a local backlight array [152].

111
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5.1 Research Question

While 12 bits of tonal resolution is the goal for HDR and WCG image distribution,

there are key technologies requiring a lower bit-depth. As examples, interfaces like

Display-Port, HDMI and HD-SDI [182] only support 10 bits of tonal resolution for

typical applications. File formats like MXF [179] and DPX [183] are also limited to 10

bits in their most used flavors, as are compression codecs like H.264 [95] and H.265

(HEVC) [91]. Therefore it would be desirable to have a quantization scheme available

that can quantize any content at 10 bits or lower without introducing visible artifacts.

Figure 5.1 illustrates the need for reducing tonal resolution and shows the locations

for the bit-depth reduction and expansion in the image processing chain.

Content 
Creation

Content 
Display

Content Storage 
and Transmission

12-bit+ 10-bit 12-bit+

Requan-
tization

Undo 
Requan-
tization

Figure 5.1: Block diagram for the application of CAQ.

5.2 Related Work

When aiming to reduce the number of code values needed for HDR image quantization

below 12 bits, knowledge about the content, the observer or the viewing environment

must be exploited [151]. Prior approaches to this problem either assume static pa-

rameters for content and viewing environment [18, 19] or are histogram based [124],
prioritizing tonal resolution on those parts of the tone scale with many pixels. Other

approaches operate in the frequency-domain [145, 168] and are therefore only appli-

cable to compression, whereas the goal herein is uncompressed baseband transmission

and file storage or pre-processing for compression. It is known from the literature on

image difference metrics [38, 197] that the visibility of small differences (like they

occur in quantization) depends on the local noise and texture. Since the PQ transfer

function is intentionally designed to exclude noise, CAQ will be designed to exploit

the phenomenon of ‘masking’ [157, 201] of small differences by noise and texture to

reduce the needed tonal resolution per image. For camera-captured images, Poisson

distributed photon shot noise [173, 175] is a strong contributor to masking of small

differences.
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5.3 Methods

In this section the dependency of needed tonal resolution on image properties will

be examined by conducting a study on visibility of quantization artifacts for synthetic

gradient images. From the findings of this study the CAQ re-quantization method will

be derived and compared to determining quantization thresholds by using a current

state-of-the-art image difference metric as well as an image based user study.

To explore the relationship between noise and required quantization, first, a study

with synthetic shallow gradients as test target is performed. A variable amount of

spatially uncorrelated additive white Gaussian noise is added to the gradient, starting

with zero noise. As can be seen in Figure 5.2 the same tonal resolution reduction can

show visible contouring (5.2 a) to b)) or be visually lossless (5.2 i) to j)) depending

on the noise amplitude on the gradient prior to quantization. In this study, the slopes

of the gradients are calculated so that the spacing of the quantization steps covers

a range of frequencies around the peak contrast sensitivity of the human eye at the

respective luminance and the viewing distance of one picture height.
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Figure 5.2: Test pattern for the gradient quantization study in order to evalu-
ate the visibility of false contours. The variance of noise σ2 is denoted relative
to the magnitude of one quantization step.
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The three participants of this study are asked to identify the coarsest quantized image

for which no change could be spotted when self-toggling [83] between the original

gradient with added Gaussian noise (Figure 5.2 a), 5.2 e) and 5.2 i)) and the same

gradient at reduced tonal resolution (Figure 5.2 b), 5.2 f) and 5.2 j)). The investigated

variable parameters are listed in Table 5.1. One participant had 20/20 vision while

the other two participants wore glasses. The participants spanned age corridors from

20-30, 30-40 and 40-50. The study setup is depicted in Figure 4.6 in the preceding

chapter. The surround was kept dark to allow for up to 3 minutes of cone adaptation

for the dark stimuli.

Table 5.1: Variable parameters of the gradient quantization study.

Noise parameters for gradient quantization study

Mean luminance 0.01, 0.1, 1, 10, 100, 300 cd/m2

Temporal frequency 0 fps (still image), 24 fps

Spatial bandwidth 20, 10, 5 cycles per degree

Amplitude 0, 1, 2, 4, 8, 16, 32, 64 standard

deviation σ in 12-bit code-values

Quantization (tonal resolution) q = 5 to 12 for 2q code values

to encode the full PQ range

All combinations of the parameters in Table 5.1 are evaluated. The results of the study

are shown in Figure 5.3. The black dots correspond to the minimum bit-depth needed

for visually lossless quantization of the gradients. While luminance, temporal and

spatial frequency of the noise (Figure 5.3 a), b) and c)) have a low impact on required

tonal resolution, it can be seen in Figure 5.3 d) that the required bit-depth is inversely

correlated to the amplitude of the noise. As an example, PQ-encoded image areas

containing white Gaussian noise with a standard deviation of four 12-bit code values

can be quantized using 9 bits of tonal resolution without showing any visual difference

for all the other parameter combinations.

5.3.1 CAQ Based Quantization

In this section the CAQ quantization scheme is introduced. CAQ is designed to exploit

the masking of quantization artifacts by noise and texture as shown in Figure 5.3 d)
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Figure 5.3: Results of the gradient quantization study. To illustrate the corre-
lation of the needed bit-depth for visually lossless encoding to the parameter
on the x-axis, lines connect study results that only differ in this parameter.

to reduce the number of code values needed to quantize an individual image. As

for camera-captured images the photon shot noise is related to luminance, CAQ pre-

dicts the required quantization for 8 equally spaced intensity segments from 0 to 8
9 in

the PQ domain (0 to 3524 cd/m2). Commercial implementations may feature more

segments. Since CAQ predicts the required quantization per intensity segment, but

spatially global, it can be applied to the image and removed by means of a simple

one-dimensional Lookup Table (LUT). For modern codecs like H.265/HEVC the re-

verse LUT can be embedded as SEI message [91] to undo a variable tone curve at the

receiver side. SDI supports ancillary data [180] and DPX and MXF also support user

defined meta data for transport of the decoding LUT.
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The block diagram of the CAQ analysis is shown in Figure 5.4. The input for the

algorithm is the PQ-encoded intensity channel. To estimate local noise and texture

an isotropic Gaussian high-pass filter (Figure 5.4 b)) with a standard deviation of 2.5

pixels for 1920 by 1080 high definition images is applied to the PQ encoded intensity

image (Figure 5.4 a)). After rectification (Figure 5.4 c)), the result is blurred again in

Figure 5.4 d) to get a robust estimate of the local masking of quantization artifacts per

pixel. These steps are consistent with models [39, 65, 126] of the phase uncertainty

properties of the human visual system [29].
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Figure 5.4: CAQ noise and texture estimation block diagram.

To calculate the minimum allowed quantization level per pixel, a calibration LUT is

applied in Figure 5.4 e). This LUT is derived from the gradient quantization study.

The calculation of the calibration LUT is illustrated in Figure 5.5. Each of the data

points corresponds to one gradient from the gradient quantization study. The x-axis

location shows the CAQ analysis result from Figure 5.4 block d) while the location

on the y-axis corresponds to the needed bit-depth for this gradient as found in the

gradient quantization study. Applying the LUT in Figure 5.4 e) assigns each pixel a

bit-depth that is sufficient to quantize this pixel without a visual difference. To find

the minimum allowed quantization per intensity range per image, the needed bit-

depth predictions are sorted by the intensity of the corresponding original image pixel

into image-dependent histogram bins in Figure 5.4 f). Finally, the minimum allowed

quantization for each segment is determined by calculating the maximum needed bit-

depths for each bin in Figure 5.4 g).
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Figure 5.5: Calculation of the CAQ calibration LUT by determining the mini-
mum required bit-depth for each CAQ analysis results.

5.3.2 HDR-VDP-2.2 Based Quantization

The CAQ design is inspired by the visual difference predictor [38]. A new version of

the visual difference predictor for HDR imagery is available as High Dynamic Range

Visual Difference Predictor 2.2 (HDR-VDP-2.2) [147]. To evaluate how CAQ performs

compared to HDR-VDP 2.2, the needed quantization for each of the 8 intensity seg-

ments is also determined by calculating the coarsest quantization that stays below

HDR-VDP 2.2’s 50% visibility threshold for all pixels. For this application, HDR-VDP

2.2 is preferred over SSIM [197] with PU curve [10] because HDR-VDP can be used

in calibrated luminance mode.

5.4 Results

To compare CAQ with re-quantization based on HDR-VDP-2.2, an image based quan-

tization study is performed. The study set-up is shown in Figure 5.6. For this study

achromatic still frames are shown on a dual modulation HDR LCD display [152]. Still

frames are selected as a worst case scenario because uncorrelated temporal noise and
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motion also mask quantization artifacts [3]. During image evaluation, the user can

adjust the quantization per intensity segment in real-time using physical sliders. To

help spot the quantization artifacts, a temporal linearly increasing offset of 1/10 of the

current quantization step is added per frame before quantization and subtracted after

quantization. This phase-shift of the quantization threshold results in continuously

moving contouring artifacts. It helps to find the exact detection threshold because of

the ‘pop-out’ effect [138] of motion. The phase-shift simulates a typical worst case

scenario for quantization when an image is followed by a slightly darker version of

itself as it occurs in ‘fade to black’ dissolves.

Figure 5.6: Setup for the image quantization study. The hangar image is
© Dolby Laboratories Inc.

The study is performed in a dark room to make sure veiling glare is kept at a minimum

level. The viewing distance is one picture height, and the participants are allowed to

move their head parallel to the display surface. Eight post-production experts from

the TV- and film industry who perform image evaluation tasks every day, adjust the

quantization for the 8 intensity segments on 12 images. These images are selected

to originate from different technologies (analog film, digital cameras and computer

animation) and include Hollywood movies, commercials and TV programs. Table 5.2

shows the technical parameters for a subset of example images used for the image
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based quantization study. The results of CAQ, HDR-VDP 2.2 and the image based

quantization study for these eight images are shown in Figure 5.8 at the end of this

section.

Table 5.2: Technical parameters of eight example images from the image
based quantization study shown in Figure 5.8.

Scene Name

Camera

Acquisition

Medium

Image Description

a) ‘Hangar’

ARRI Alexa

ARRIRAW 2.8K View from a hangar into the

sun with a pilot’s silhouette.

b) ‘Fantasy Flight’

ARRI Alexa

ARRIRAW 2.8K Man standing in front of a

painting.

c) ‘2002 B-Movie’

Arricam LT and ST

Kodak Vision

200T, 500T

Women dancing on stage in

front of a wall of light bulbs.

d) ‘2014 A-Movie’

ARRI Alexa

ARRIRAW 2.8K Man lying on the ground in a

dark atmosphere

e) ‘2009 Kids Film’

Toon Boom Harmony

CG Animation,

Rendering, 2K

Dark animated jungle

illuminated by fireflies

f) ‘2006 A-Movie’

Panavision Mill. XL2

Kodak Vision2

250D, 500T

Sorcerer on stage illuminated

by blue searchlights

g) ‘Flirting with Fire’

Phantom Flex4K

4K RAW Explosive flame and fireball

h) ‘Showgirl’

2*ARRI Alexa

2*ProRes

4:4:4 HD

Young woman illuminated by

directional stagelight

Three participants of the image based quantization study have 20/20 eyesight, four

users perform the study with glasses, and one user wears contact lenses. The partici-

pants have a mean age of 40. The study setup is the same as depicted in Figure 4.6 in

the preceding chapter but with a slightly closer viewing distance of one picture height.

The correlation between the image quantization study and CAQ as well as the HDR-

VDP-2.2 based quantization is compared in Figure 5.7. Predictions below the dashed

line may result in visible quantization errors, because the predicted tonal resolution

is less than required by the observers of the image quantization study. Compared

to the image quantization study and except for the darkest segment, CAQ delivers a
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better prediction of the needed quantization compared to the HDR-VDP-2.2 based re-

quantization, CAQ predictions tend to be closer to the visibility threshold and mostly

above, as needed for worst-case design. For the darkest segments CAQ often over-
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Figure 5.7: Tonal resolution prediction by HDR-VDP-2.2 and CAQ compared
to the image quantization study.

predicts the required bit-depth compared to the verification study because CAQ does

not include an observer glare model [33, 167]. This is by design because observer glare

depends on the position, orientation and age of the observer [193]. In addition to the

uncertainty about the observer, cropping parts of the image, as performed in pan and

scan operations or in the processing for small mobile screens, can fully remove sources

of glare from the image. Consequently, relying on observer glare for re-quantization

would have worked for the controlled set up of the image quantization study, but

would fail for the intended usage scenarios of CAQ. Therefore, CAQ only exploits

image inherent local texture for re-quantization, to stay independent of the observer

and display conditions.

The Spearman rank order correlation between all results from the verification study is

0.78 for CAQ and 0.74 for the HDR-VDP-2.2 based quantization. When omitting the

darkest segment, the correlation for CAQ improved to 0.87 while HDR-VDP-2.2 yields

0.70.

The typical results for camera-captured images that are subject to photon shot noise

can be observed in Figures 5.8 a) and b). In the ‘Fantasy Flight’ image in Figure 5.8 b),
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the darkest segment requires a tonal resolution of about 6 bits while the bit-depth

requirements for the brighter segments constantly rise to about 8 bits of tonal resolu-

tion. The ‘Showgirl’ image 5.8 h) has a bimodal histogram. In this case, CAQ predicts

a much higher needed tonal resolution for the darkest segment compared to the user

study and HDR-VDP-2.2. This is due to the intended lack of glare prediction in CAQ.

The results from the image based verification study confirm the expectation from the

gradient and noise based study. When using variable quantization, most camera cap-

tured images need 50-200 code values, while computer generated noiseless content

typically needs 200 to 500 code values for visually lossless representation. Using CAQ,

all images from the image based study could be quantized to less than 1024 code

values. For an extended image set of 200 low-noise video frames, two computer-

generated images containing very smooth gradients over the full luminance range

needed more than 10 bits of tonal resolution according to CAQ. To avoid visible arti-

facts in these cases, the local masking prediction map calculated in Figure 5.4 e) can be

used to apply local dithering solely to those areas where the needed quantization bit-

depth cannot be reached. On an Intel ‘Xeon E5 1620 v3’ processor the non-optimized

MATLAB implementation of CAQ runs about three orders of magnitude faster com-

pared to the HDR-VDP-2.2 MATLAB version available from the HDR-VDP project web-

site [131].

5.5 Summary

High dynamic range imagery with a tonal resolution of 12 bits and more needs to be

quantized at bit-depths of 10 bits or less to fit into current image storage and transmis-

sion formats. CAQ - a robust and fast method to determine the needed tonal resolution

of high dynamic range images by exploiting local noise and texture is presented. By

applying the CAQ algorithm, images can be re-quantized by means of a simple one-

dimensional lookup table to 10 bits or less. In addition to the lookup table CAQ deliv-

ers a map of the necessary bit-depth per pixel. This map can be used to locally apply

dithering for those rare cases where more than 10 bits of tonal resolution are needed

for visually lossless representation. Compared to using a state-of-the-art image dif-

ference predictor, CAQ performs better for estimating needed quantization and needs

significantly less computing power.
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ample images from the image based quantization study.



Chapter 6
Conclusion and Outlook

This thesis starts with giving an overview of the open problems in the field of HDR and

WCG image acquisition, distribution, storage and display. It then focuses on image en-

coding by describing the history of luminance and color encoding. This includes an

overview of state-of-the-art standard dynamic range and high dynamic range lumi-

nance quantization schemes and color spaces.

The original work starts with introducing a new high dynamic range and wide color

gamut video data set. This data set has a dynamic range of 18 stops and covers nearly

the full visible gamut. Two versions are available to the scientific community, the re-

constructed scene radiance as well as a color graded version featuring the full Rec.2100

gamut and a dynamic range of 0.005 to 4000 cd/m2. Since its introduction, the HdM-

HDR-2014 data set is used to develop new HDR and WCG aware video compression

codecs, camera characterization methods, image processing algorithms, video qual-

ity metrics, eye tracking data sets, tone mapping algorithms and to evaluate different

display technologies.

Subsequently two new HDR and WCG color difference encoding models for quantizing

HDR and WCG video like the HdM-HDR-2014 data set are introduced. The ICACB and

ICTCP color spaces are co-optimized for the decorrelation of luminance and chroma

as well as hue linearity and encoding efficiency. The test data and training data is

described as well as the cost functions for optimization. It is shown that by using the

123
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proposed optimization methods color encodings can be tailored to satisfy specific re-

quirements like hue linearity and uniform quantization by weighting the cost functions

accordingly. Based on the findings from the optimization of the ICACB color space the

concept of crosstalk in LMS domain is introduced. Crosstalk in LMS domain serves

to emulate limitations in adaptation to static color encoding models. The ICTCPcolor

space is derived by applying the learnings about crosstalk in linear LMS domain and

new contributions of LMS to intensity I back to the original IPT color space. Both

color spaces, ICACB and ICTCP are further compared to state-of-the-art HDR and WCG

color encodings that are also proposed for the use in HDR and WCG video coding.

ICACB and ICTCP perform better in both hue linearity and coding efficiency compared

to existing models.

These new color spaces still require a tonal resolution of 11 to 12 bits. However,

current mainstream video infrastructure is limited to 10 bits. Hence, a re-quantization

algorithm is developed to further reduce bit-depth requirements of HDR video. The

CAQ texture and noise aware quantization scheme reduces tonal resolution needs for

visually lossless storage and transmission of HDR video by only exploiting content

characteristics but without restricting presentation size or viewing environment.

In conclusion this thesis provides an HDR and WCG video data set and methods to

encode HDR and WCG content for efficient storage, distribution and compression via

current and next generation infrastructure.

Remaining Challenges in HDR and WCG Imaging

In image acquisition sensors capable of capturing more than 14 f-stops of dynamic

range while staying linear for precise color acquisition are not yet available. Reference

video content featuring HDR, WCG and spatial resolution beyond high definition and

temporal resolution beyond 24 fps will be needed to evaluate the performance of

future image manipulation and display technologies. Gamut mapping is especially

critical for low-noise gradients. Thus, a computer generated WCG and HDR reference

data set is needed.
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With increasing computational power in display devices it will be worth searching

for more complex encoding and storage models. Higher computational complexity

may improve the coding efficiency, de-correlation and hue linearity compared to ICACB

and ICTCP while still staying below the computational complexity of color appearance

models. To optimize these new models with more degrees of freedom a large amount

of data on human perception is needed. Compared to currently available datasets,

this data should extend to the spectral locus and feature an extended dynamic range.

In distribution efficient quantization schemes like the ones introduced in this thesis

will stay important. Ultra high definition Phase 2 (7680 by 4320 pixels at 120 fps

and 12 bits) needs ~11 GByte/s even when subsampled to 4:2:2 spatial resolution.

This data-rate is beyond the capabilities of current HDMI 2.0 and DisplayPort 1.4b in-

terfaces. Therefore, decorrelation for subsampling, efficient quantization and prepro-

cessing for compression will stay important topics, not only for content distribution

over large distances but even for low distance applications like low latency display

stream compression for transmission from playback device to display. It is desirable to

extend the re-quantization concept introduced in Chapter 5 to include the color differ-

ence axes. Higher spatial and temporal resolution video and new acquisition methods

like the quanta image sensor [67] will need new color spaces and new concepts for

bit-rate reduction.

There is a large amount of literature on tone mapping and gamut mapping. As of

2016 Google Scholar lists 1220 results for the term "tone mapping operator" and 990

results for "tone mapping algorithm" with 380 papers being common to both queries.

The vast majority of these proposed algorithms work fully or semi-automatic. This

contradicts the requirements in applications for TV and cinema where the preservation

of artistic intent is the priority and tone mapping and image manipulation algorithms

featuring intuitive artist controls verified by user studies are still lacking.

In display technology, achieving higher peak brightness in TV, cinema and mobile de-

vices while staying within a tight power budget is one of the major challenges. For TV

replacing RGB-LEDs with blue lighting in combination with quantum dot filters [177]
promises a higher efficiency and providing a wider gamut at the same time. In cinema

prototypes using light redistribution [41, 42, 43] in combination with laser illumi-
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nation [178] or self illuminated screens [171] may be used to achieve higher peak

brightness.

At the end of the day, it is not technology, but stories that drive us into the cinema or in

front of the TV. For all the new technologies mentioned here the most important aspect

that will decide if the technology gets adopted or fails will not only be the best technical

implementation, but whether the creative talents will find these technologies useful

for story-telling or not. The first tests look promising, but whether the technologies

presented here will help to tell stories has yet to be seen in the future.
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Appendix A
Appendix: HdM-HDR-2014 Overview

In the following appendix, all scenes from the HdM-HDR-2014 data set introduced

in Chapter 3 are summarized. First the scene name, length and frame rate are listed.

Then, a thumbnail color graded for standard dynamic range sRGB color space is shown

alongside a brief description of the scene. Finally, luminance quantiles and chromatic-

ity plots of the reconstructed scene radiance visualize the dynamic range and gamut

of the individual scenes.

The HdM-HDR-2014 data set consist of the reconstructed scene radiance and a color

graded version. The reconstructed scene radiance is delivered as Open EXR files in

Alexa Wide Gamut color space and is not meant for direct display as it is the equivalent

to RAW camera files. The reconstructed scene radiance can be used for working on

new camera characterization algorithms and to verify image processing chains. It

can also be used for research on automatic color rendering, tone mapping and gamut

mapping. To be displayed properly, the reconstructed scene radiance has to be color

graded.

The color graded version of the HdM-HDR-2014 content is most useful for evaluat-

ing displays or compression algorithms. As an example, it can be used to evaluate

tone mapping and gamut mapping algorithms that map down from the 0-4000 cd/m2

Rec.2100 base format to lower luminance levels like standard dynamic range and

smaller gamuts like Rec.709.

149



150 Appendix

The following plots illustrate the dynamic range and gamut of the reconstructed scene

radiance. For the chromaticity plots, values outside the spectral locus can occur be-

cause of the matrix based camera characterization used in the HdM-HDR-2014 project.

New algorithms for camera characterization will help to avoid out of locus values in

the future [137].

A.1 Still Life

The still life scene listed in Table A.1 contains high contrast and standard skin tones,

all in one reference image. This can be useful when comparing monitors or checking

image processing pipelines.

Table A.1: HdM-HDR-2014: ‘HDR Test’ scene.

HDR Testimage, Night / Interior 481 frames, 25 fps

Longshot: A couple with dark and pale skin tones is stand-

ing behind a color-checker and a transmittance gray scale.

A couple with dark and pale skin tones and clothes is

lighted by means of a high contrast backlight. This pro-

vides bright highlights on skin, hair and clothes as well

as dark areas. The square above the gray scale on top

of the Ulbricht sphere represents a black/stray-light refer-

ence with virtually no radiance emitted.
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A.2 Wide Gamut and Moving Lights

An annual fair is filmed on location to provide saturated highlights and fast moving

colorful objects. The saturated lights are dominant light sources that illuminate the

actors with different colorful shades. The overall brightness and color of the scenes

changes very fast, both outside on the fair shown in Table A.2, as well as inside the

beer hall depicted in Table A.3. To provide even more light changes, the scenes are

edited together as a sequence with multiple cuts.

Table A.2: HdM-HDR-2014: ‘Carousel Fireworks’ scene.

Carousel Fireworks, Night / Exterior 2536 frames, 25 fps

Establishing Longshot: Crowded street on an annual fair

with illuminated fun rides in the background

Fullshot: Moving carousel with colored lights

Mediumshot: Girl watching carousel

High Angle Longshot: Fireworks

‘Carousel Fireworks’ is a sequence of shots acquired un-

der available light at an annual fair during the night. The

distinction of this scenery is to present colorful self illu-

minated objects and dark surroundings at the same time.

Changing colored light sources illuminate the scenery in-

cluding cloth and skin tones of the actors. The moving car-

riages of the carousel create blurred light sources that are

both filmed in standard speed and slow-motion. The fire-

work provides bright colored highlights glittering against

a uniform black sky with the moon in frame.
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Carousel Fireworks 02
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Carousel Fireworks 04
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Carousel Fireworks 05
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The quantization issues shown in the chromaticity diagram of ‘Carousel Fireworks 08’

are due to the camera being limited to 8 bits of tonal resolution when shooting high

frame rates.

Carousel Fireworks 06
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Carousel Fireworks 07
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Carousel Fireworks 09
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Table A.3: HdM-HDR-2014: ‘Beerfest’ scene.

Beerfest Lightshow, Night / Interior 2035 frames, 25 fps

Multiple Longshots: Crowded hall with fast moving lights

‘Beerfest Lightshow’ is filmed on location in a smoky beer

hall while a light show is performed. This light show in-

cludes various kinds of fast switched and moving lights

that send out bright and colorful light beams. Addition-

ally, a mirror bowl reflects neutral colored light beams.

Laser beams flash up and strobe lights as well as blinder

lights brighten up the scenery temporarily.
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Beerfest Lightshow 02
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Beerfest Lightshow 03
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Beerfest Lightshow 04
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Beerfest Lightshow 06
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Beerfest Lightshow 07
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A.3 Low Key Scenes

The following low-key scenes are also filmed in with flickering light sources on loca-

tion. But in this case, the light sources are mostly black body radiators covering a wide

range of color temperatures. The mood of the sceneries is dominated by the natural

single light sources in combination with dim low-key sceneries.

Table A.4: HdM-HDR-2014: ‘Fireplace’ scene.

Fireplace, Dawn to Night / Exterior 952 frames, 24 fps

Fullshot: Tilt down from defocused branches to group of

persons at campfire.

Medium Fullshot: Persons standing beside and behind

flames at a fire site stoking up the fire.

The warm light of the campfire illuminates the persons

that are surrounded by a snowy scenery. The fire provides

a strong color contrast to the blue ambient light at dawn.

Torchlights and flying sparks against the dark background

provide high contrasts and with fast movements.
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Fireplace 02
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Table A.5: HdM-HDR-2014: ‘Smith’ scene.

Smith Welding, Mixed Light / Interior 1102 frames, 25 fps

Fullshot: A smith creates a light arc and flying sparks by

welding iron.

In the dark mixed light of a blacksmith’s shop, the low-

key scenery is brightened up by an intense, fast moving

point light source. The blue welding arc is reflected on the

scenery and forms a color contrast to the yellow spraying

sparks and the warm fire in the background.
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Smith Hammering, Mixed Light / Interior 467 frames, 25 fps

Fullshot: A smith carries a forging blank from a fire to his

anvil. Sparks fly when the iron is pounded.

Hammering incandescent iron at red heat creates bright

spraying sparks that dominate the scenery in front of a

dark background. In this setup, the fire and the forging

blank are heated up to 800°C (1470°F).

Smith Hammering
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A.4 Sunlight Scenes

The ‘Sunlight Scenes’ represent typical conditions of documentary filming. They are

captured in the field under natural light conditions and regular sunlight. Their dy-

namic range exceeds the latitude of the dual camera image acquisition system. Hence,

the framed sun orb and specular highlights are partly left in the clipping range, in or-

der to save details in the shades. A travelling camera accentuates the appearance of

textures. This can be seen on natural objects in the landscape scenery like in the ‘Fish-

ing’ scen and on synthetic materials in an environment of architecture like in the ‘Cars’

scene. In both longshots of the following table, the brightness of the scene changes

substantially over time, to provide a challenge for temporal tone mapping operators.

Table A.6: HdM-HDR-2014: ‘Fishing’ scene.

Fishing Longshot, Sunrise / Exterior 834 frames, 25 fps

Longshot: A fisherman stands in front of a lake. The cam-

era is travelling towards him.

‘Fishing Longshot’ represents a typical sunrise in nature. It

shows scenery with a lake, trees and a fisherman in front

of a sunny sky. The rising sun is just coming up and shines

on surfaces like wood and moving water. Shafts of sun-

light illuminate the morning haze in soft gradients and are

mirrored on the water while specular highlights contrast

to dark foreground objects.

Fishing Longshot
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Fishing Closeshot, Sunrise / Exterior 371 frames, 25 fps

Closeshot:A fishhook is thrown into a lake and pulled out.

In ‘Fishing Closeshot’, sunlight reflections are glistening

on the water surface stimulated by a fishhook. The expo-

sure is set to highlight-protection excluding the center of

the reflection of the sun.

Fishing Closeshot
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Table A.7: HdM-HDR-2014: ‘Cars’ scene.

Cars Longshot, Day / Exterior 820 frames, 25 fps

Longshot: Cars and flags on a stone paced plaza in front

of a building made of steel and glass.

‘Cars Longshot’ is a back-lit scene showing the sun in

frame. The sunlight emphasizes textures of stone, steel,

glass and the flags by generating specular reflections. The

camera pans from the sun to the entrance of a building.

Contrast increases throughout the shot, as stray light is

reduced at the end of the camera pan.

Cars Longshot
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Cars Fullshot, Day / Exterior 442 frames, 25 fps

Fullshot: Black car stands on plaza and is captured by a

moving camera.

‘Cars Fullshot’ shows directional sunlight on a black car.

The material appearance of the car finish and glass win-

dows is emphasized by a camera travelling. The exposure

is set to highlight protection excluding the specular reflec-

tions to preserve the dark shades under the car.

Cars Fullshot
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Cars Closeshot, Day / Exterior 414 frames, 25 fps

Closeshot: Details of a standing black car are captured by

a moving camera.

‘Cars Closeshot’ shows specular reflections of directional

sunlight moving over the front of a car. The surface feel

of the car finish and the glass windows are emphasized

through a close framing. The exposure is set to highlight

protection excluding the specular reflections of the sun.

Cars Closeshot
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A.5 High Contrast Skin Tones

The following sequences focus on the reproduction of skin tones in different lighting

situations, ranging from documentary settings in the ‘Bistro’ scene to movie settings

like the ‘Poker’ scene. They are set up under controlled lighting conditions in a studio.

Faces, hands, hair and textiles, are partially lit up and exposed to the maximum lumi-

nance available in the latitude of the recording device, but they are as well presented

in marginal illumination. The mean luminance of the ‘Poker Travelling Slowmotion‘

scene changes over time by temporarily covering the brightest areas in the image while

the brightness and type of the illumination is changed in the ‘Showgirl 2‘ scene.

Table A.8: HdM-HDR-2014: ‘Bistro’ scene.

Bistro, Day / Interior 969 frames, 24 fps

Medium Fullshot: A man sits at a table with the sun shining

on him through a window.

Fullshot: A waiter steps from shade into sunlight followed

by a woman coming from the dark part of the room. She

points at him with a gun.

The ‘Bistro’ sequence simulates an available-light situation,

where the sun shines through a window as a single source

light. This scenery combines local bright sunlight at the

window with a dark guest room resulting in a high con-

trast scenery that represents a difficult lighting situation

typically encountered in documentary filming. The set-ups

are staged to show skin tones, hair and textures like glass,

water, wood and textiles in sunlight and in the shade.
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Bistro 02
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Bistro 03
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Table A.9: HdM-HDR-2014: ‘Poker’ scene.

Poker Fullshot, Night / Interior 600 frames, 24 fps

Fullshot: Gamblers sitting at poker table.

In the ‘Poker Fullshot’ scene a poker club is set up to

demonstrate extreme high- and low-lights in the same

frame. The fine structured white tablecloth is lit up by a

single source hydrargyrum medium-arc iodide lamp (HMI)

and represents a high contrast to the dark room with many

details in the shades.
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Poker Travelling Slowmotion, Night / Interior 1947 frames, 120 fps

Mediumshot: Gamblers smoking and playing cards.

‘Poker Travelling Slowmotion’ is based on the same setup

as the ‘Poker Fullshot’ scene, but recorded in slow-motion.

The actors are framed closer and smoking cigarettes. An

over-the-shoulder camera movement covers the table and

reveals it again.
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Table A.10: HdM-HDR-2014: ‘Showgirl’ scene.

Showgirl 1, Night / Interior 776 frames, 25 fps

Closeshot: Actress sitting in front of a makeup mirror. Il-

luminated by warm tungsten lighting.

‘Showgirl 1’ shows an actress sitting in front of a makeup

mirror. Tungsten light bulbs illuminate her skin tones and

create specular highlights on her costume, makeup, jew-

elry and other reflecting props. This glamorous mood is

often intended in film productions to emphasize the beauty

of an actress.
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Showgirl 2, Night / Interior 341 frames, 25 fps

Closeshot: Actress standing up from makeup-table while

light changes from tungsten to daylight.

The ‘Showgirl 2’ scene executes a light change from tung-

sten light to bright stagelight from an HMI-lamp. Thus the

skin tone of the actress is shown in two extreme lighting

situations throughout one take. The dull feather boa serves

as a diffuse white reference, whereas the glistening of the

costume and jewelry is brighter than diffuse white.
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A.6 Additional Ressources

All HdM-HDR-2014 scenes can be downloaded from the project website [72], both

the reconstructed scene radiance in scene referred state and the color graded version

in display referred state. The color graded version is graded for Rec.2100 gamut with

4000 cd/m2 peak white. The web site provides additional technical details like expo-

sure and the choice of lenses.
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