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ABSTRACT 

 
High dynamic range imaging is currently being introduced 
to television, cinema and computer games. While it has been 
found that a fixed encoding for high dynamic range imagery 
needs at least 11 to 12 bits of tonal resolution, current 
mainstream image transmission interfaces, codecs and file 
formats are limited to 10 bits. To be able to use current 
generation imaging pipelines, this paper presents a baseband 
quantization scheme that exploits content characteristics to 
reduce the needed tonal resolution per image. The method is 
of low computational complexity and provides robust 
performance on a wide range of content types in different 
viewing environments and applications.  
 

Index Terms— Image quantization, image encoding, 
masking, high dynamic range, video encoding. 
 

1. INTRODUCTION 
 

While the most recent advances in image quality 
previously focused on increasing spatial resolution [1], the 
focus nowadays shifts to extending dynamic range [2], tonal 
resolution (i.e., bit-depth) [3] and color gamut [4]. There has 
been extensive research on the most efficient quantization 
scheme for encoding high dynamic range (HDR) baseband 
signals [5]. The resulting ‘SMPTE ST.2084’ [6] encoding 
curve needs 12 bits of tonal resolution to quantize any 
content in its 0-10,000cd/m2 range without visual artifacts. 
In the following discussions, this encoding will be referred 
to as ‘PQ’ for Perceptual Quantizer. The bit-depths and 
tonal nonlinearity of PQ were determined by threshold 
visibility criteria and the most demanding imagery (low 
gradients having zero noise and no texture). Current 
monitors can reproduce this tonal resolution of 12 bits by 
using a 10-bit LCD panel with a local backlight array [7]. 

While 12 bits is the goal, there are key technologies 
requiring a lower bit-depth. As an example, interfaces like 
Display-Port, HDMI and HD-SDI only support 10 bits of 
tonal resolution for typical applications. File formats like 
MXF and DPX are also limited to 10 bits in their most used 
flavors, as are compression codecs like H.264 and popular 
H.265 (HEVC) Main 10 profile. Therefore it would be 
desirable to have a quantization scheme available that can 

quantize any content at 10 bits or lower without introducing 
visible artifacts. Figure 1 shows the locations for the 
proposed bit depth reduction and expansion in the image 
processing chain. 

 

 
Figure 1. Block diagram for the proposed HDR image 
storage and transmission flow.  
 
When aiming to reduce the number of code values needed 
for HDR image quantization below 12 bits, either 
knowledge about the content, the observer or the viewing 
environment must be exploited [5]. Prior approaches to this 
problem either assume limited parameters for content and 
viewing environment [8] [9] or prioritize tonal resolution on 
those parts of the tone scale with the largest amount of 
pixels [10]. Other approaches operate in the frequency-
domain [11] [12] and are therefore only applicable to 
compression, whereas our goal is uncompressed baseband 
transmission and file storage or pre-processing for 
compression. 

In the following paragraph we will first examine the 
dependency of needed tonal resolution on image properties 
by conducting a fundamental study on quantization. From 
the findings of this study a re-quantization method named 
CAQ (for Content Aware Quantization) will be derived and 
compared to determining quantization thresholds by using a 
current state of the art image difference metric as well as an 
image based verification study. 

  
2. METHODS 

 
It is known from the work on image difference metrics [13] 
[14] that the visibility of small differences (like they occur 
in quantization) depends on the local noise and texture. 
Since PQ was intentionally designed to exclude noise, CAQ 
will be designed to exploit the phenomenon of ‘masking’ 
[15] [16] of small differences by noise and texture to reduce 
the needed tonal resolution per image. For camera-captured 
images, Poisson distributed photon shot noise [17] [18] is a 
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strong contributor to masking of small differences. To 
explore the relationship between noise and required 
quantization we first performed a fundamental study using 
shallow gradients as test target. The slopes of these 
gradients were calculated so that the spacing of the 
quantization steps covered a range of frequencies around the 
peak contrast sensitivity of the human eye at the respective 
luminance and the viewing distance of one picture height. A 
variable amount of spatially uncorrelated white Gaussian 
noise was added to the gradient, starting with zero noise. As 
can be seen in Figure 2 the same tonal resolution can show 
visible contouring (2.b) or be visually lossless (2.j) 
depending on the noise amplitude on the gradient prior to 
quantization. 
 

 
Figure 2. Quantization study test pattern for evaluating the 
visibility of false contours. The variance of the noise σ2 is 
denoted relative to the magnitude of one quantization step. 
 
The three participants of this study were asked to identify 
the coarsest quantized image for which no change could be 
spotted when self-toggling [19] between the original image 
(2.a, 2.e, 2.i quantized at 12bit in PQ) and the same image at 
lower quantization (2.b, 2.f, 2.j). The investigated variable 
parameters are listed in Table 1.  
 

Parameters for fundamental quantization study 
Mean Luminance 0.01, 0.1, 1, 10, 100, 300cd/m2 
Temporal frequency 0fps (still image), 24fps 
Spatial bandwidth 20, 10, 5 cycles per degree 
Amplitude  0, 1, 2, 4, 8, 16, 32, 64 standard 

deviation σ in 12 bit code-values 
Quantization  
(tonal resolution) 

q = 5 to 12 for 2! code values to 
encode the full PQ range 

Table 1. Variable parameters for quantization study. 
 
All combinations of the parameters in Table 1 were 
evaluated. Figure 3 shows the minimum bit depth needed for 
visually lossless quantization of the gradients. While 
luminance (3.a) as well as temporal- and spatial frequency 
of the noise (3.b, 3.c) have a low impact on required tonal 
resolution, it can be seen in (3.d) that the required bit depth 

is inversely correlated to the amplitude of the noise. As an 
example, PQ-encoded image areas containing white 
Gaussian noise with a standard deviation of four 12 bit code 
values can be quantized using 9 bits without showing any 
visual difference for all the other parameter combinations. 
 

  
Figure 3. Quantization study results. To illustrate the 
correlation of the needed bit-depth for visually lossless 
encoding to the parameter on the x-axis, lines connect study 
results that only differ in this parameter. 
 
2.1. Content aware quantization (CAQ) 
 
The CAQ quantization scheme introduced in this paragraph 
is designed to exploit the masking of quantization artifacts 
by noise and texture as observed in Figure (3.d) to reduce 
the number of code values needed to quantize an individual 
image. As for camera-captured images the photon shot noise 
is related to luminance, CAQ predicts the required 
quantization for 8 equally spaced intensity segments from 0 
to 8/9 in the PQ domain (0 to 3524cd/m2). Since CAQ 
predicts the required quantization per intensity segment, but 
spatially global, it can be applied to the image and removed 
by means of a simple one-dimensional lookup table (LUT). 
To undo this variable tone-curve at the receiver side codecs 
like H.265/HEVC can embed the reverse LUT as SEI 
message [20] while most file formats and signal interfaces 
support user defined ancillary data [21]. 

The block diagram for the CAQ analysis is shown in 
Figure 4. The input for the algorithm is the PQ-encoded 
intensity channel. To estimate local noise and texture an 
isotropic Gaussian high-pass filter (4.b) with a standard 
deviation of 2.5 pixels for HD images is applied to the PQ 
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encoded intensity image (4.a). After rectification (4.c), it is 
blurred (4.d) again to get a robust estimate of the local 
masking of quantization artifacts per pixel. These steps are 
consistent with models [22] [23] [24] of the HVS phase 
uncertainty properties [25]. 
 

Figure 4. CAQ noise and texture estimation block diagram. 
 

To calculate the minimum allowed quantization level per 
pixel, a calibration LUT (4.e) is applied. This LUT is 
derived from the fundamental quantization study as 
illustrated in Figure 5.  
 

 
Figure 5. Calibration LUT calculation by determining the 
minimum required bit-depth for each CAQ analysis results. 
 
Each of the data points in Figure 5 corresponds to one 
gradient from the fundamental quantization study. The x-
axis location shows the CAQ analysis result from block 
(4.d) while the location on the y-axis corresponds to the 
needed bit depth for this gradient as found in the 
fundamental quantization study. Applying the LUT in (4.e) 
assigns each pixel a bit depth that is sufficient to quantize 
this pixel without a visual difference. To find the minimum 
allowed quantization per intensity range per image, the 
needed bit depth predictions are sorted by the intensity of 
the corresponding original image pixel into image-
dependent histogram bins (4.f). Finally, the minimum 

allowed quantization for each segment is determined by 
calculating the maximum (4.g) of the needed bit depths for 
each bin. 
 
2.2. HDR-VDP-2.2 based quantization 
 
The CAQ design is inspired by the visual difference 
predictor. A new version of the visual difference predictor 
for HDR imagery is available as ‘High Dynamic Range 
Visual Difference Predictor 2.2’ (HDR-VDP-2.2) [26]. To 
evaluate how CAQ performs compared to the HDR-VDP 
2.2, we also determined the quantization for each of the 8 
intensity segments by calculating the coarsest quantization 
that stays below HDR-VDP 2.2’s 50% visibility threshold 
for all pixels. We opted to use HDR-VDP 2.2 over SSIM 
[14] with PU curve [27] because HDR-VDP can be used in 
calibrated luminance mode. 
 
2.3. Image based verification study 
 
To verify CAQ and compare it with re-quantization based 
on HDR-VDP-2.2, an image based verification study was 
performed. For this study achromatic still frames were 
shown on a dual modulation HDR LCD display [7]. Still 
frames were selected as a worst case because uncorrelated 
temporal noise and motion also mask quantization artifacts 
[28] (also see Figure 3.b). During evaluation, the user could 
adjust the quantization per intensity segment in real-time 
using physical sliders. To help spot the quantization 
artifacts, a temporal linearly increasing offset of 1/10 of the 
current quantization step was added per frame before 
quantization and subtracted after quantization. This phase-
shift of the quantization threshold resulted in continuously 
moving contouring artifacts. It helped to find the exact 
detection threshold because of the “pop-out” effect [29] of 
motion. It also simulates a typical worst case for 
quantization when an image is followed by a slightly darker 
version of itself as occurs in ‘fade to black’ dissolves. 

The study was performed in a dark room to keep veiling 
glare at a minimum level and the viewing distance was one 
picture height. Eight postproduction experts from the TV- 
and film industry, who perform image evaluation tasks 
every day, adjusted the quantization for the 8 intensity 
segments on 12 images. These images were selected to 
originate from different technologies (analog film, digital 
cameras and computer animation) and included Hollywood 
movies, commercials and TV programs. All participants had 
20/20 eyesight. 3 users performed the study without 
eyesight correction, 4 with glasses, and one user wore 
contact lenses. 

 
3. RESULTS 

 
The correlation between the image based verification study 
and CAQ as well as the HDR-VDP-2.2 based quantization is 
compared in Figure 6. Predictions below the dashed line 
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may result in visible quantization errors, because the 
predicted tonal resolution is less than required by the 
observers of the verification study. Except for the darkest 
segment CAQ performs better compared to the HDR-VDP-
2.2 based re-quantization, as the CAQ predictions tend to be 
closer to the visibility threshold and mostly above, as 
needed for worst-case design. For the darkest segments 
CAQ often over-predicts the required bit-depth compared to 
the verification study because CAQ does not include an 
observer glare model [30] [31]. This is by design because 
observer glare depends on the position, orientation and age 
of the observer [32]. In addition to the uncertainty about the 
observer, cropping parts of the image, as performed in pan 
and scan operations or in the processing for small mobile 
screens, can fully remove sources of glare from the image. 
Consequently, relying on observer glare for re-quantization 
would have worked for our controlled study set up, but will 
fail for the intended usage scenarios. Therefore, CAQ only 
exploits image inherent local texture for re-quantization, to 
stay independent of the observer and display conditions. 
 

 
Figure 6. Tonal resolution prediction by HDR-VDP-2.2 and 
CAQ compared to the image-based verification study.  
 
The Spearman rank order correlation between all results 
from the verification study was 0.78 for CAQ and 0.74 for 
the HDR-VDP-2.2 based quantization. When omitting the 
darkest segment, the correlation for CAQ improved to 0.87 
while HDR-VDP-2.2 yielded 0.70. 

The typical results for camera-captured images that are 
subject to photon shot noise can be observed in Figure 7. In 
the ‘Fantasy Flight’ image (7.a) the darkest segment 
requires a tonal resolution of ~6 bits while the brighter 
segments need ~8 bits of tonal resolution. The ‘Showgirl’ 
image (7.b) has a bimodal histogram. In this case, CAQ 
predicts a much higher needed tonal resolution for the 
darkest segment compared to the user study and HDR-VDP-
2.2. This is due to the intended lack of glare prediction in 
CAQ. By a using a higher criterion than 50% detection, the 
prediction of HDR-VDP-2.2 would be lower and likely 
provide a better statistical fit, but the results would conflict 
with worst-case design goals of having no images requiring 
a higher bit depth than the model predictions.   

 

Figure 7. Predicted minimum quantization for two images. 
 
The results from the image based verification study confirm 
the expectation from the gradient and noise based study. 
When using variable quantization, most camera captured 
HDR images need 50-200 code values, while computer 
generated noiseless content typically needs 200 to 500 code 
values for visually lossless representation. Using CAQ, all 
images from the verification study could be quantized to 
less than 1024 code values. For an extended image set of 
200 low-noise video frames, only two computer-generated 
images containing very smooth gradients over the full 
luminance range needed more than 10 bits of tonal range 
according to CAQ. To avoid visible artifacts in these cases, 
the local masking prediction map (4.e) can be used to apply 
local dithering solely to those areas where the needed 
quantization bit depth cannot be reached. On an Intel ‘Xeon 
E5 1620 v3’ processor CAQ runs about three orders of 
magnitude faster compared to HDR-VDP-2.2. 
 

4. CONCLUSION 
 
High dynamic range imagery with a tonal resolution of 12 
bits and more needs to be quantized at bit depths of 10 bits 
or less to fit into current image storage and transmission 
pipelines. We present a robust and fast method to determine 
the needed tonal resolution of high dynamic range images 
by exploiting local noise and texture. Our method allows to 
re-quantize images by means of a simple one dimensional 
lookup table to 10 bits or less. In addition to the lookup 
table our method delivers a map of the needed bit depth per 
pixel. This map can be used to locally apply dithering for 
those rare cases where more than 10 bits of tonal resolution 
are needed for visually lossless representation. Compared to 
using a state of the art image difference predictor, our 
method performs better for estimating needed quantization 
and is of significantly lower computational complexity. 
 

5. ACKNOWLEGEMENTS 
 
We thank the study participants and Philipp Kraetzer in 
conducting the verification study and acknowledge Robin 
Atkins, Scott Miller, Timo Kunkel, and Peng Yin for their 
thoughtful comments in proofreading and Pat Griffis for the 
name ‘CAQ’. 
 

887



6. REFERENCES 
 
[1]  International Telecomunication Union, "Parameter values for 

the HDTV standards for production and international 
programme exchange," ITU-R Rec. BT.709-6, 2015.  

[2]  Society of Motion Picture and Television Engineers , "Study 
Group Report: High-Dynamic-Range (HDR) Imaging 
Ecosystem," SMPTE, pp. 1-52, 2015.  

[3]  A. Luthra, E. François and W. Husak , "Requirements and 
Use Cases for HDR and WCG Content Distribution," 
ISO/IEC JTC 1/SC 29/WG 11 (MPEG) Doc. N15084, 2016.  

[4]  International Telecommunication Union, "Parameter values 
for ultra-high definition television systems for production and 
international programme exchange," ITU-R Rec. BT.2020-2, 
pp. 1-6, 2015.  

[5]  M. Nezamabadi, S. Miller, S. Daly and R. Atkins, "Color 
signal encoding for high dynamic range and wide color gamut 
based on human perception," IS&T/SPIE Electronic Imaging, 
2014.  

[6]  Society of Motion Picture & Television Engineers, "High 
Dynamic Range Electro-Optical Transfer Function of 
Mastering Reference Displays," ST.2084:2014, pp. 1-14, 
2014.  

[7]  A. Ninan, "Impacting the Display Industry Through Advances 
in Next Generation Video," Society for Information Display - 
Display Week, 2014.  

[8]  T. Borer, "WHP 283 - Non-linear Opto-Electrical Transfer 
Functions for High Dynamic Range Television," British 
Broadcasting Corporation, 2014. 

[9]  T. Borer and A. Cotton, "WHP 309 - A “Display 
Independent” High Dynamic Range Television System," 
British Broadcasting Corporation, 2015. 

[10]  S. P. Lloyd, "Least squares quantization in PCM," IEEE 
Transactions on Information Theory, vol. 28, no. 2, pp. 129-
137, 1982.  

[11]  R. Rosenholtz and A. B. Watson, "Perceptual adaptive JPEG 
coding," International Conference on Image Processing, vol. 
1, pp. 901-904, 1996.  

[12]  M. J. Nadenau, J. Reichel and M. Kunt, "Wavelet-based color 
image compression: exploiting the contrast sensitivity 
function," IEEE Transactions on Image Processing, vol. 12, 
no. 1, pp. 58-70, 2003.  

[13]  S. Daly, "Visible differences predictor: an algorithm for the 
assessment of image fidelity," SPIE/IS&T 1992 Symposium 
on Electronic Imaging: Science and Technology, pp. 2-15, 
1992.  

[14]  Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, 
"Image quality assessment: from error visibility to structural 
similarity," IEEE Transactions on Image Processing, vol. 13, 
no. 4, pp. 600-612, 2004.  

[15]  D. G. Pelli, "Effects of visual noise," University of 
Cambridge, 1981.  

[16]  G. E. Legge and J. M. Foley, "Contrast masking in human 
vision," JOSA Optical Society of America, vol. 70, no. 12, pp. 
1458-1471, 1980.  
 
 

[17]  T. Seybold, C. Keimel, M. Knopp and W. Stechele, "Towards 
an Evaluation of Denoising Algorithms with Respect to 
Realistic Camera Noise," IEEE International Symposium on 
Multimedia (ISM), pp. 203-210, 2013.  

[18]  M. Schoeberl, A. Brueckner, F. Siegfried and A. Kaup, 
"Photometric limits for digital camera systems," Journal of 
Electronic Imaging, vol. 21, no. 2, p. 020501 1, 2012.  

[19]  D. M. Hoffman and D. Stolitzka, "A new standard method of 
subjective assessment of barely visible image artifacts and a 
new public database," Journal of the Society for Information 
Display, vol. 22, no. 12, pp. 631-643, 2014.  

[20]  International Telecommunication Union, "Recommendation 
H.265 - High efficiency video coding," Series H: Audiovisual 
and Multimedia Systems, Infrastructure of audiovisual 
services – Coding of Moving Video, 2015.  

[21]  Society of Motion Picture & Television Engineers, "Ancillary 
Data Packet and Space Formatting," ST.291-1:2011, pp. 1-17, 
2011.  

[22]  S. Daly, "A visual model for optimizing the design of image 
processing algorithms," Image Processing, 1994. 
Proceedings. ICIP-94., IEEE International Conference, vol. 
2, pp. 16-20, 1994.  

[23]  F. Xiao-fan and S. Daly, "Automatic JPEG Compression 
Using a Color Visual Model," IS&T PICS: Image Processing, 
Image Quality, Image Capture Systems Conference, 2003.  

[24]  A. Lukin, "Improved visible differences predictor using a 
complex cortex transform," International Conference on 
Computer Graphics and Vision, 2009.  

[25]  T. Caelli, M. Huebner and I. Rentschler, "The detection of 
phase shifts in two-dimensional images," Perception & 
Psychophysics, vol. 37, no. 6, pp. 536-542, 1985.  

[26]  M. Narwaria, R. K. Mantiuk, M. P. Da Silva and P. Le Callet, 
"HDR-VDP-2.2: a calibrated method for objective quality 
prediction of high-dynamic range and standard images," 
Journal of Electronic Imaging, vol. 24, no. 1, pp. 010501-
010501, 2015.  

[27]  A. Tunc, R. Mantiuk and H.-P. Seidel, "Extending quality 
metrics to full luminance range images," Electronic Imaging, 
pp. 68060B-68060B, 2008.  

[28]  A. J. Ahumada Jr, B. L. Beard and R. Eriksson, 
"Spatiotemporal discrimination model predicts temporal 
masking functions," Photonics West - Electronic Imaging, pp. 
120-127, 1998.  

[29]  P. McLeod, J. Driver, Z. Dienes and J. Crisp, "Filtering by 
movement in visual search," Journal of Experimental 
Psychology: Human Perception and Performance, vol. 17, no. 
1, p. 55, 1991.  

[30]  A. Rizzi and J. J. McCann, "Glare-limited appearances in 
HDR images," Journal of the Society for Information Display, 
vol. 17, no. 1, pp. 3-12, 2009.  

[31]  Commission Internationale de l'Éclairage, "CIE 146:2002 - 
CIE equations for disability glare," Color Research & 
Application, no. 27, p. 457–458, 2002.  

[32]  J. J. Vos, "On the cause of disability glare and its dependence 
on glare angle, age and ocular pigmentation," Clinical and 
Experimental Optometry, vol. 86, no. 6, pp. 363-370, 2003.  

 

888


