II I I II IC II HOCHSCHULE DER MEDIEN

Content Aware Quantization: Requantization of High Dynamic Range Baseband Signals Based on Visual Masking by Noise and Texture

2016 IEEE International Conference on Image Processing (ICIP)

Jan Froehlich^{1,2}, Guan-Ming Su³, Scott Daly³, Andreas Schilling¹, Bernd Eberhardt²

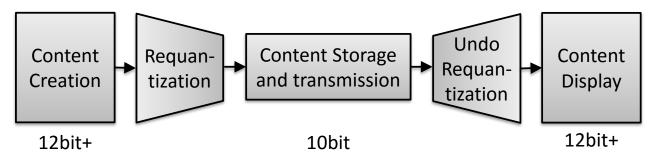
¹ Stuttgart Media University, ² University of Tübingen, ³ Dolby Laboratories Inc.

Outline of the Talk

II I I II IC II HOCHSCHULE DER MEDIEN

- 1. Motivation
 - HDR Ecosystem
- 2. Fundamental concepts
 - Noise & Texture vs. needed quantization step

- 4. Intended Limitations
 - Flare
- 5. Results
 - Qualitative
 - Quantitative

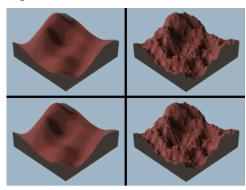

- 3. Methods
 - Prediction Kernel
 - Calibration

6. Conclusion

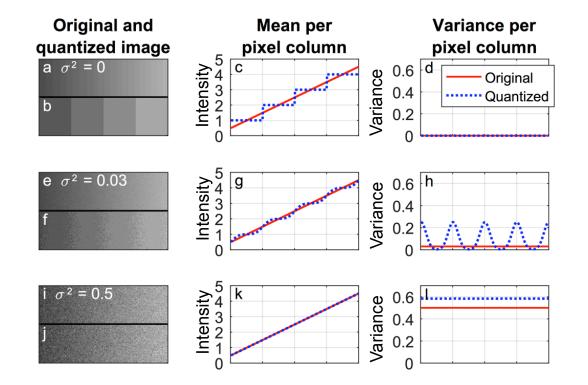
Motivation

II I I II II II HOCHSCHULE DER MEDIEN

- 0.0005-10000 cd/m² zero noise HDR imagery needs 11-12 bits of tonal resolution per color channel for visually lossless quantization*
- Most current video file formats, compression codecs and transmission interfaces are limited to 10 bits of tonal resolution in their mainstream flavors


*SMPTE ST.2084 / ITU Rec. BT.2020 / S. Miller, M. Nezamabadi and S. Daly, "Perceptual Signal Coding for More Efficient Usage of Bit Codes," Annual Technical Conference & Exhibition, SMPTE 2012, Hollywood, CA, USA, 2012, pp. 1-9.

J. Froehlich et al.


Fundamental Concept

II I I II II II HOCHSCHULE DER MEDIEN

 Exploit masking of quantization artifacts by noise and texture

Ferwerda, James A., et al. "A model of visual masking for computer graphics." *Proceedings of the 24th annual conference on Computer graphics and interactive techniques*. ACM Press/Addison-Wesley Publishing Co., 1997.

J. Froehlich et al.

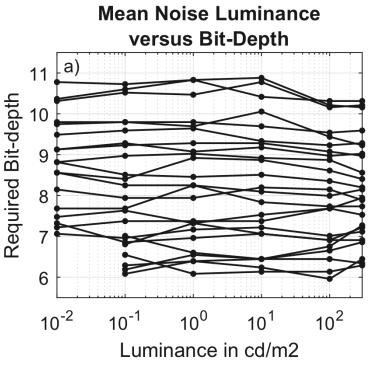
Methods: Quantization Study Pattern and Parameters

- Use smooth gradients with different slope and orientation as most critical pattern for quantization artifact visibility
- Noise parameters varied:

L	
Mean Luminance	0.01, 0.1, 1, 10, 100, 300 cd/m ²
Temporal frequency	Ofps (still image), 24fps
Spatial bandwidth	20, 10, 5 cycles per degree
Amplitude	0, 1, 2, 4, 8, 16, 32, 64 standard
	deviation σ in 12 bit code-values
Quantization	$\mathbf{q} = 5$ to 12 for 2^q code values to
(tonal resolution)	encode the full PQ range

II I I II II II HOCHSCHULE DER MEDIEN

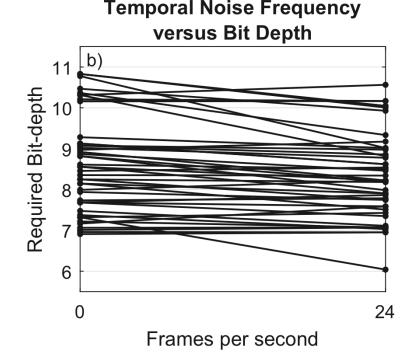
J. Froehlich et al.


CAQ: Requantization of High Dynamic Range Baseband Signals

Slide 5 of 27

Quantization Study Results: Luminance

- No strong correlation between luminance and required bit-depth.
- This also confirms the perceptual uniformity of the 'Perceptual Quantizer' (PQ) encoding curve which has been found to deliver a better match to low amplitude visibility compared to previous models like 'log' or 'gamma'.


Dots connected by lines only vary in the parameter on the x-axis

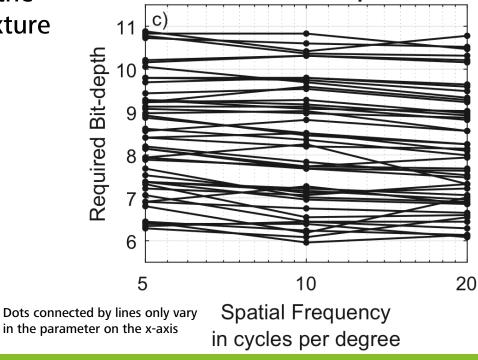
Slide 6 of 27

Quantization Study Results: Temporal Frequency

II I I II IE II HOCHSCHULE DER MEDIEN

- No strong correlation between the temporal frequency of noise or texture and the required bit-depth.
- Only static images and 24 frames per second were studied.

Dots connected by lines only vary in the parameter on the x-axis

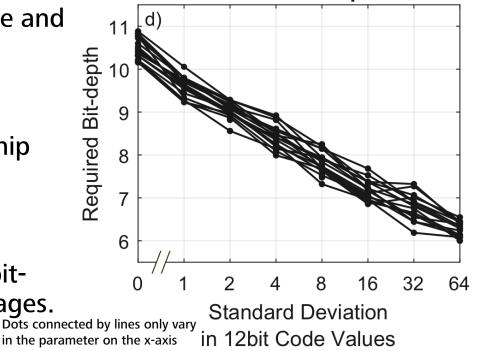

Quantization Study Results: Spatial Frequency

 No strong correlation between the spatial frequency of noise or texture and the required bit-depth.

|1 | | 1|]C |1 HOCHSCHULE DER MEDIEN

Slide 8 of 27

Spatial Noise Frequency versus Bit Depth

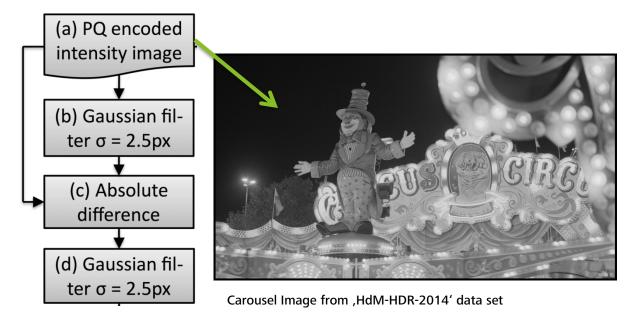

J. Froehlich et al.

Quantization Study Results: Noise Amplitude

- *Strong* correlation between the amplitude of the noise or texture and the needed bit depth.
- We designed a re-quantization method to exploit this relationship between noise amplitude and needed quantization.
- Our method (CAQ) can reduce bitdepth requirements for HDR images.

Noise Amplitude versus Bit Depth

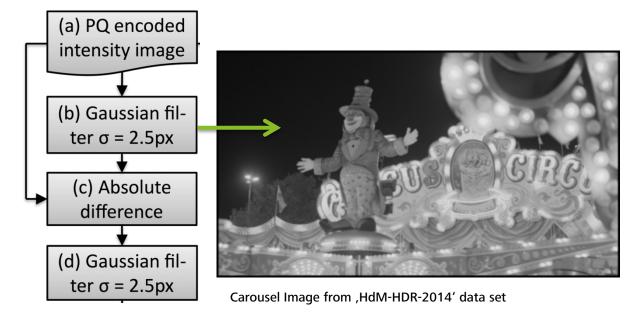
HOCHSCHULE DER MEDIEN



J. Froehlich et al.

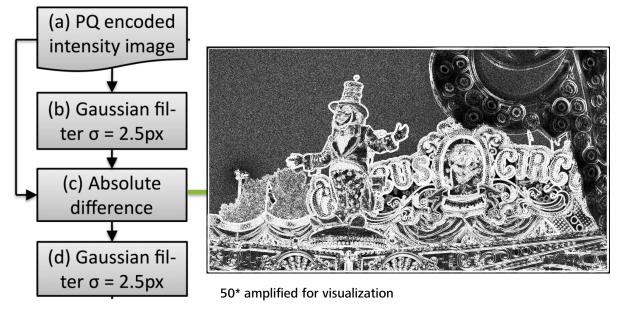
CAQ: Requantization of High Dynamic Range Baseband Signals

Slide 9 of 27


 Calculate intensity image and convert to PQ domain.

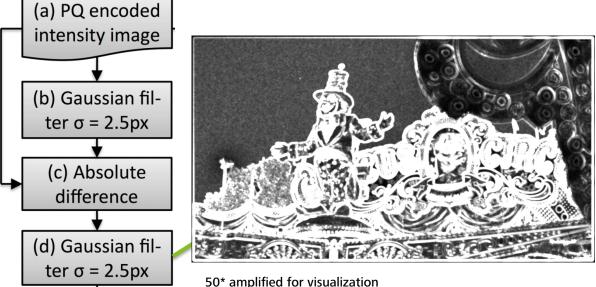
Slide 10 of 27

J. Froehlich et al.


• Low pass filter.

Slide 11 of 27

J. Froehlich et al.

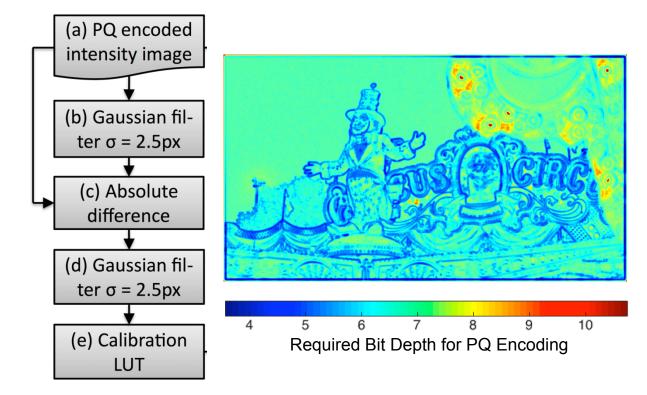

 Calculate sum of absolute differences (SAD).

Slide 12 of 27

J. Froehlich et al.

 Low pass filter again to increase robustness and simulate local masking of the human visual system.

J. Froehlich et al.


CAQ: Requantization of High Dynamic Range Baseband Signals

Slide 13 of 27

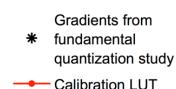
Methods: CAQ Block Diagram

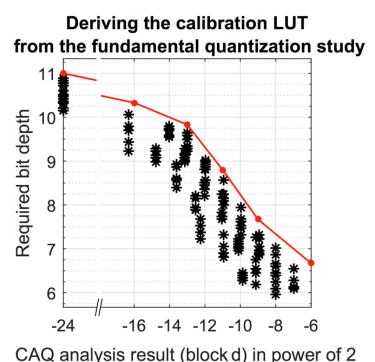
II I I II IC II HOCHSCHULE DER MEDIEN

 Apply calibration look up table to obtain needed bit depth values per pixel from map of presence of high frequencies

J. Froehlich et al.

CAQ: Requantization of High Dynamic Range Baseband Signals

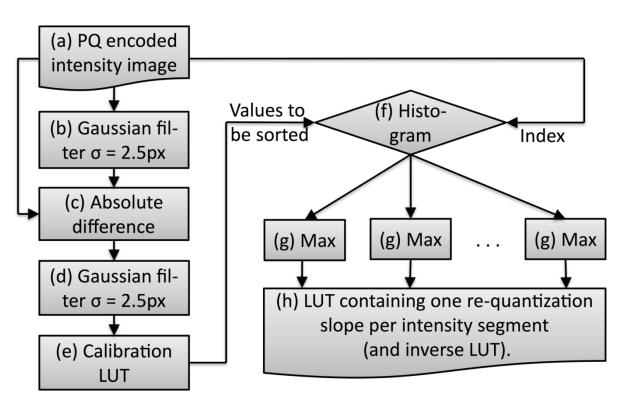

Slide 14 of 27


Methods: CAQ Block Diagram - Calculation of the Calibration LUT

- Calibration lookup table predicts the needed bit-depth for each value from the high-pass-filter
- Trained on the images of the fundamental quantization study
- Each CAQ filter result from block (d) is assigned the minimum needed bitdepth for visually lossless quantization

Training set: Fundamental quantization study pattern

J. Froehlich et al.


CAQ: Requantization of High Dynamic Range Baseband Signals

Slide 15 of 27

|I | | I|][|I HOCHSCHULE DER MEDIEN

Methods: CAQ Block Diagram

- Typical images contain more noise in the dark areas (photon shot noise).
- The spatial quantization map can be used to calculate a luminance dependent requantization LUT.
- This LUT reduces the needed code values per *intensity range* opposed to the spatial map from block (e).
- Calculation can be done per frame or shot.

J. Froehlich et al.

Results and Verification: Test Sequences for the Verification Study

Scene Name Thumb-Acquisition **Image Description** Medium Camera nail a) Hangar ARRIRAW View from Hangar into the ARRI Alexa 2.8K sun with a pilot's silhouette. b) Fantasy Flight ARRIRAW Man standing in front of a ARRI Alexa 2.8K painting. e) 2009 Kids Film CG Animation. Dark animated jungle Toon Boom Harmony Rendering, 2K illuminated by fireflies f) 2006 A-Movie Kodak Vision2 Sorcerer on stage illuminated Panavision Mill. XL2 250D, 500T by blue searchlights g) Flirting with Fire Phantom Explosive Flame / Fireball ARRI Alexa 4K Flex Girl illuminated by h) Showgirl 2*ProRes 2*ARRI Alexa 4:4:4 HD directional stagelight

J. Froehlich et al.

CAQ: Requantization of High Dynamic Range Baseband Signals

Slide 17 of 27

IJ

HOCHSCHULE DER MEDIEN

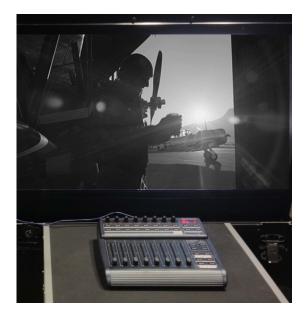
h

|1 | | 1]]C |1 HOCHSCHULE DER MEDIEN

- *Surround:* dark room (minimum veiling glare)
- Display Resolution: 1920 x 1080 pixel
- *Viewing distance:* 1 picture height
- *Study participants:* 8 expert viewers who perform image evaluation tasks every day.
 - All Participants had 20/20 vision, 3 without eyesight correction, 4 with glasses, 1 with contact lenses
- *Study Task:* Method of adjustment exploiting the pop-out effect of motion when phase-shifting quantization.

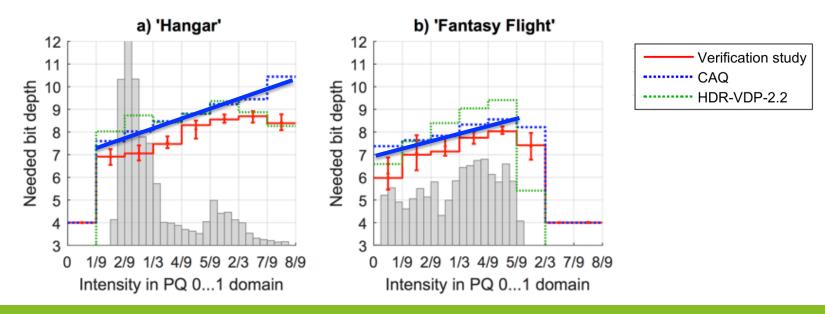
|1 | | 1|]C |1 HOCHSCHULE DER MEDIEN

- *Surround:* dark room (minimum veiling glare)
- Display Resolution: 1920 x 1080 pixel
- *Viewing distance:* 1 picture height
- *Study participants:* 8 expert viewers who perform image evaluation tasks every day.
 - All Participants had 20/20 vision, 3 without eyesight correction, 4 with glasses, 1 with contact lenses
- *Study Task:* Method of adjustment exploiting the pop-out effect of motion when phase-shifting quantization.


|1 | | 1|]C |1 HOCHSCHULE DER MEDIEN

- *Surround:* dark room (minimum veiling glare)
- Display Resolution: 1920 x 1080 pixel
- *Viewing distance:* 1 picture height
- *Study participants:* 8 expert viewers who perform image evaluation tasks every day.
 - All Participants had 20/20 vision, 3 without eyesight correction, 4 with glasses, 1 with contact lenses
- *Study Task:* Method of adjustment exploiting the pop-out effect of motion when phase-shifting quantization.

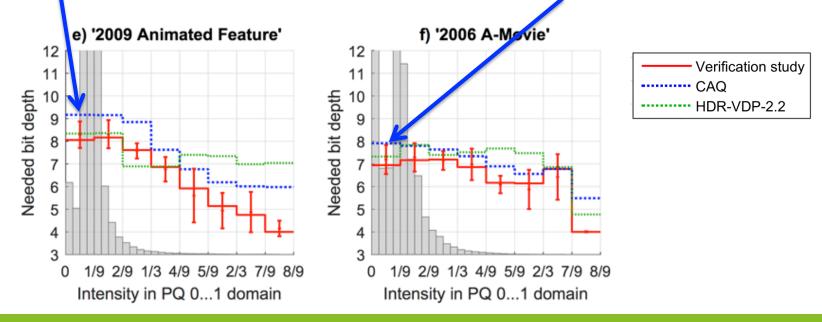
|1 | | 1|]C |1 HOCHSCHULE DER MEDIEN


- *Surround:* dark room (minimum veiling glare)
- Display Resolution: 1920 x 1080 pixel
- *Viewing distance:* 1 picture height
- *Study participants:* 8 expert viewers who perform image evaluation tasks every day.
 - All Participants had 20/20 vision, 3 without eyesight correction, 4 with glasses, 1 with contact lenses
- *Study Task:* Method of adjustment exploiting the pop-out effect of motion when phase-shifting quantization.

CAQ: Requantization of High Dynamic Range Baseband Signals

Results:

 Needed quantization for images captured by digital cameras is typically limited by photon shot noise: (relatively more in dark areas)

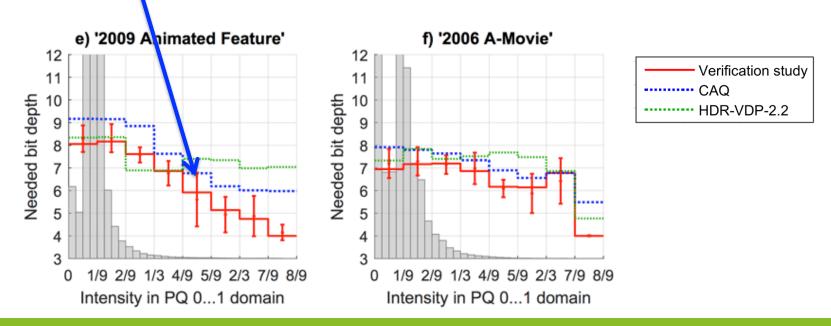

Slide 22 of 27

J. Froehlich et al.

CAQ: Requantization of High Dynamic Range Baseband Signals

Results:

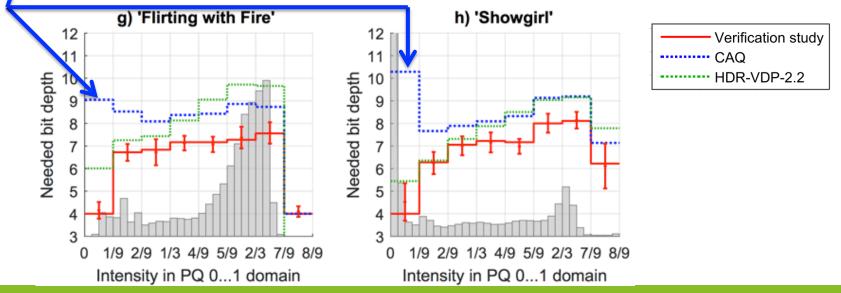
Animated Content (e) typically needs much higher bit depths
compared to content originated on analog film (f)

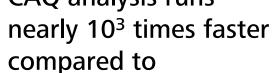


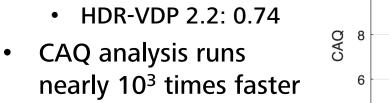
Slide 23 of 27

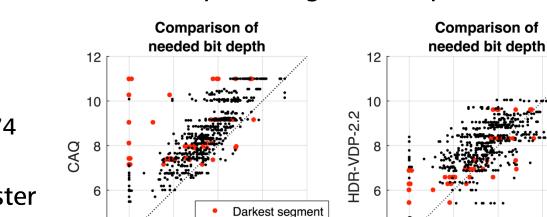
II I I II II II II HOCHSCHULE DER MEDIEN

Results:


• Small objects can also be quantized coarser:




Limitations:


II I I II IE II HOCHSCHULE DER MEDIEN

- Flare is not detected by CAQ (by design).
- HDR-VDP 2.2 *does* detects flare.
- For our application, reducing bit-depth based on flare is unwanted because possible sources of flare may be cropped before viewing.

Segments 2 to 8

12

10

4

For our specific application CAQ prediction has a higher correlation compared to using HDR-VDP 2.2 for predicting needed quantization.

- ۲
- Spearman rank

Results: All Test Sequences

- order correlation:
 - CAQ: 0.78 ٠

HDR-VDP 2.2.

- HDR-VDP 2.2: 0.74 ٠

CAQ: Requantization of High Dynamic Range Baseband Signals

Verification study

4

Slide 26 of 27

10

12

8

Verification study

HOCHSCHULE DER MEDIEN

Conclusion

II I I II IC II HOCHSCHULE DER MEDIEN

- We presented CAQ a fast method for re-quantizing images.
- CAQ can quantize most HDR image sequences with less than 10 bits without introducing visible quantization artifacts by means of a one dimensional lookup table.
- CAQ provides a spatial map of needed bit depth per pixel. This can open up new applications like quantizing at even lower bit-depths or to apply dithering only locally where needed.