Spatial Access Methods and Query Processing in the Object-Oriented
GIS GODOT!

Volker Gaede

Institut fiir Wirtschaftsinformatik, Humboldt Universitat zu Berlin,
Spandauer Str. 1, 10178 Berlin, Germany
gaede@wiwi.hu-berlin.de

Wolf-Fritz Riekert
FAW Ulm, Helmholtzstr. 16,
89081 Ulm, Germany

riekert@faw.uni-ulm.de

ABSTRACT. In this paper, we describe the spatial access method z-ordering and
its application in the context of the research project GODOT, which is based on
the commercial object-oriented database system ObjectStore [LLOWOI1]. After
identifying a range of spatial predicates, we show that the intersection join is of
crucial importance for spatial joins. Next, we propose an efficient method for
query processing, which takes advantage of z-ordering and uses the conventional
indexing mechanisms offered in current database systems (e.g., relational and object-
oriented).

1. INTRODUCTION

Spatial data management is an important database application area where object-
oriented database concepts can be utilized efficiently in a variety of ways [GL94].
As a result, such techniques are gradually being integrated into GIS (geographic
information system) products, and object-oriented spatial database systems are
being implemented on top of commercial OODB systems [GR93, SV92].

A major conceptual problem that arises in this context concerns the definition of
the relevant spatial operations and their efficient computation. Many efforts have
been undertaken to define a continuum of spatial queries, also known as query space,
which is complete in a certain sense, and to define data structures which support
the efficient computation of these queries (cf. [Ege94, Mol92]). One of the most
important spatial operations is the spatial join. Giinther [Gii93] gives the following

!The GODOT project has been conducted at FAW (Research Institute for Applied Knowledge
Processing) in Ulm, Germany since 1992. GODOT was commissioned by the State of Baden-
Wiirttemberg, Siemens Nixdorf Informationssysteme AG and Siemens AG.

definition of spatial joins:

The spatial join of two relations 2 and S, denoted by R M4, 5, is the set of tuples
from R x S where the ith column of R and the jth column of S are of some spatial
type, 6 is some spatial predicate, and R.: stands in relation 8 to S.j5. According to the
terminology used in geographic information systems and object-oriented databases
we will also refer to the tuples r € R, s € S, etc. as spatial objects or geo-objects and
to the relations R, S, etc. as object extents or sets of objects. We assume (without
loss of generality) that one dedicated column in the relations R, S, etc., is of some
spatial data type and represents the geometry of the related spatial objects. We will
therefore write R My S as a shorthand for the spatial join R X;5; S whenever ¢ and
j denote these dedicated columns in the relations R and S, respectively.

A brief survey of the literature yields a wide variety of spatial predicates that may
be used for spatial joins, including

e intersects(r,s)

contains(r, s)

is_enclosed_by(r,s)

distance(r,s)OF, with © € {=,<,<,>,>} and E a given real number
e northwest(r,s)
e adjacent(r,s)

These predicates check if some spatial relationship between two objects is satisfied.
Another class of spatial operations which will become important in this context
concerns the “transformation” of geo-objects. Examples are (r € R, s € S):
convex_hull(r), buffer(r, d), northwest(r), geometric_union(r, s), geometric_difference(r, s),
etc. A closer inspection of these spatial predicates and operations shows that the
intersection join R Migiersects(rs) © Plays a crucial role for the computation of all the
other predicates.

For predicates such as contains, encloses, or adjacent, the intersection join is an
efficient filter that yields a set of tuples (r,s), typically much smaller than the
Cartesian product R x 5, which still contains all solutions to the original query.
That is, the intersection join is an efficient preprocessing step.

Most of the remaining predicates (for example, distance, northwest) can be computed
by using the intersection join as a postprocessing step as follows. In order to compute
the spatial join R Mg, 5) S for one of those f-predicates, we can apply some function
Pg: R — R and ¢y : S — S" to R and S respectively, then compute the intersection
join R Mintersectsirs) 5+ I the functions ¢ and 1y have been properly defined, a
tuple (7, s) belongs to the spatial join R My, 5 S if and only if R Miiersects(rs) -
For example, it is possible to compute the northwest query R Xpothwest(r,s) © (asking
for all pairs (r,s), where s is situated in the northwest of r) in the following way?:

northweSt(R) Mintersects(r,s) S

?Let the northwest-function for a relation in the following formula be defined as the element-wise
application of the northwest-function on the elements of the relation. That is, by using the spatial
attribute of the given tuple, the northwest function precomputes the area located to the northwest.

That is, instead of checking the northwest predicate for every pair of tuples in the
Cartesian product of both relations, the northwest function is applied to the first
relation involved, followed by an intersection join with the second relation

With this concept it is possible to reduce the most common spatial joins to an
ordinary intersection join, which requires some pre- and/or postprocessing. The
following table gives a concise overview of the required transformations.

Postprocessing

L. R Mis_enclosed_by(r,s) S — Uis_enclosed_by(r,s)(R Mintersects(r,s) S)
R Mcontains(r,s) S — Ucontains(r,s)(R Mintersects(r,s) S)
3. R Madjacent(r,s) S —

O common_border(r,s)anot(overlap(r,s))

(R Mintersects(r,s) S)

4. R Moverlay(r,s) S — /~Lcompute_intersection(r,s)(R Mintersects(r,s) S)
Preprocessing

5 R Mdistance(r,s)<d S — bUfFer(Rv d) Mintersects(r,s) S

6. R Mnorthwest(r,s) S — northweSt(R) Mintersects(r,s) S

. R Mnearest_neighbor(r,s) S = min(bUﬂ:er(Rvd)) Mintersects(r,s) S

In the above table o denotes the well-known selection operator and g is the tuple
constructor operator. It should be pointed out that the above transformations are
independent of the actual representation of the geometry.

The remainder of this paper is organized as follows. In Section 2 we give a short
introduction to z-ordering. In Section 3 we develop a more formal description of the
underlying z-value calculus and section 4 shows that it can be used for processing
and optimizing the most common spatial queries by using a minimal set of essentially
four ¢-functions. In Section 5, we illustrate the overall architecture and show how
the technique of query rewriting can be applied to achieve the presented concepts.

2. Z-ORDERING

Although there is a large number of spatial access indexing techniques [Gii88,
Kol90], most of these techniques cannot be easily integrated into a commercial
database system. This paper, however, shows that the z-ordering scheme (see, for
example, [OMS8]) has the potential of being implemented on top of a commercial
database system. One reason for this is that the z-ordering is a logical access method
and not a physical one, even if physical clustering is beneficial and can be exploited
by ObjectStore.

Z-ordering assumes a recursive decomposition of the plane into a hierarchical confi-
guration of rectangular areas known as z-regions. These z-regions can be identified
canonically by binary code strings known as z-values consisting of ones (’1’) and
zeros ('07). If the z-value of a given region prefixes an other z-zvalue, then the
former region encloses the latter; for example, 00 encloses 001. Figure 1 shows some
z-regions and their associated z-values. Any spatial object can be approximated by
a set of z-regions which form the lowest upper bound to the spatial extension of the

111
1

110 | (7]_&(01111¢110109
1 |——1
|

10

01

00

000 001 010 011 100 101 110 111
00 01 10 11
0 1

Figure 1: Decomposition of a given object using the z-value approximation.

object.?
Since these z-regions are uniquely identified by their associated z-values, the spatial
extension of any spatial object can be approximated by a set of z-values.

7 ={z1,%22,...,zn} (n finite)

The basic idea in the work presented here is to compute results of spatial queries
(particularly of the intersection join) on the basis of z-value sets. As we will show
in the following section, the computation of spatial queries using z-values can be
performed by means of simple (boolean) operations rather than by computationally
expensive geometric operations. Like most spatial access methods, however, the
result of a query using z-values is only a set of candidate objects, which must be
postprocessed using the exact geometries, to eventually find those objects that really
satisfy the inquiry.

3. FORMAL MODEL OF QUERY PROCESSING USING Z-ORDERING
There are two possible views to describe a spatial database using z-ordering:

1. The z-value centered view: each existing z-value is bound to one or more
objects.

2. The object centered view: each object is composed of a set of z-values which
are stored as a set-valued attribute of the object.

Note that these two perspectives are totally different from the viewpoint of query
processing. In the first case, a query using z-values would scan the z-value extent
(a collection of all existing z-values) for matching z-values and then search objects
using these z-values. In the second case, one has to retrieve first the objects of the
(geo-) object extent () and then scan their extent for matching z-values. For our
discussion we will use the latter model as a basis.

In the remainder, we will call the set of all (true) prefixes of the given z-value the

3As can be seen from this introduction, the z-ordering scheme can easily be extended to handle
n-dimensional objects.

upper hull and all the z-values which are prefixed by a given z-value, the lower
hull. Note that the region R corresponding to the z-value set Zgr is enclosed by
all regions corresponding to z-values in the upper hull. Conversely, R encloses all
regions corresponding to z-values in the lower hull.

In order to develop a more formal model of query processing using z-values, we
introduce the following terminology.

e z;: a sequence of values from {0, 1}

|z:]: length of z;, i.e., the number of digits in the 0, 1- sequence

Z: a non-empty set of z-values

g = max(|z;]): a measure for the granularity of z-values in the database

e 1i;(z): cutting operator, cuts the given z-value to the length i, i.e., leading
digits are preserved up to the length ¢

e ¢;(z): extension operator, generates all possible extensions up to a given
length ¢

o Z=Ae(z)||zi| <k <g &z € Z}: lower hull
o 7 ={m(z)]1 <k <zl & z € Z}: upper hull
o 7/t =7 UZ: hull closure

e (): extent of existing (geo-) objects

e 0,.7: z-value set of object o;

To evaluate the submitted queries, we have to define how they can be computed in
the domain of z-values. For this purpose, we introduce a minimal set of essentially
four different ¢ functions. A more precise definition of the ¢-function is given in
[GG94]. For our purpose it suffices to know, that each of ¢-functions ¢, transforms
a set of z-values Z into another set of z-values Z’. More formally:

b L 7'
where ¢ denotes a certain constraint defined on this function.

1. qbbuger(d)(Z): generate, for a given set Z, a z-value buffer of distance d; for
convenience we assume that distances with respect to z-regions are measured
in units of the grid size of the underlying cell structure

2. Gadjacent(Z) = Opuier(1)(Z): generate, for a given set of z-values Z, all possible
values of adjacent cells (the distance 1 stands for the grid quantum)

3. &,(Z): v € {north,south,east, west}: generate all z-values situated in the
direction ~.

4. ¢(Z) = Z: compute the lower hull

5. ¢(Z) = Z: compute the upper hull

6. ¢T(Z) = ZU Z: carry out the hull closure for the given set; for brevity, will
often write Z% instead of ¢ (7)

It should be pointed out that these functions are defined on the level of z-values and
not on the exact object geometries. Hence, all operations can be carried out very
fast.

Examples:

1. ¢: given Z = {001,01} = ¢(Z) = {001*,01%},

that is, generate all z-values having the same prefix?

2. ¢: given Z = {001,01} = &(Z) = {001,01, 00,0},
that is, apply the cutting operator p; successively to the given set Z.

3. @butter(d): The effect of the buffer operator is depicted in figure 2.

original geometry
/ z-value approximation

u actud buffer for agiven distance d

i
1~ / buffer generated by the buffer opeator
i

10

01

000 00l 010 011 100 101 110 111
00 01 10 i

0 1

Figure 2: For the given geo-object and its z-value extension a buffer of distance d is
build. Both, the exact buffer and its z-value buffer a depicted. Note, however, that
the z-value buffer is build on basis of the original z-value set.

After introducing these fundamental functions, we can define the most important
operations and equivalences to be used in the sequel:

1. intersection:
intersects(Z', Z") — Z'nZ"+£0
= {FeZ F=p ()& ez} v
{3"eZ": 2" = ppn(2) & 2 € Z'}

*We will elaborate on how to represent these values in terms of intervals in section 4.1.

— FeZ: el =7InI"T£0
<:> HZIIEZ”:ZHEZ/+</:>ZHQZ/+%®

For efficiency reasons, the equivalence of the last two lines very important,
since the complexity depends on the cardinality of the participating sets Z'(Z").
Due to the above equivalences, the spatial intersection (for z-values) can be
reduced to a simple enclosure test for one given value at best.

2. 1s_enclosed_by:
is_enclosed by(Z', 7") «— Z' CZ"
= Ve . Secr
In the above equation all elements are tested for enclosure in Z”. A slight

variation of the above query reveals a way how this test can be done in a more
efficient way.

Aler ¢z

Instead of testing all elements of 2’ for enclosure in Z”, the negation of the
above equation can be tested more efficiently, i.e., it is sufficient to find one
element of Z' not in Z” to negate the assumption of enclosure. Informally
stated:

—is_enclosed by(Z',Z7") <— 3 € Z :2 ¢ 2"

3. contains: Z' D Z"
contains(Z', Z") = is_enclosed by(Z", Z")

This equivalence enables the optimizer to reduce the contains test to an is_enclosed_by
test or vice versa.

4. QUERIES IN DETAIL

In the next few sections, we will argue different kinds of queries and discuss their
implementation.

1. Point Query
Given a point p, find all objects enclosing this point.
The given point p is represented by its z-value z,. Therefore the query asking
for all objects containing this point would be

onint = {0|Zp € M & o€ Q}

Processing this query would be inefficient since for each object o in the database
one would have to compute the lower hull. A more efficient way is:

Qpoint = {o|Fz €7, 2 € 0.7 & 0 € Q}

This means that it suffices to find one z-value in the object extent which is
included in the upper hull of the z,.

2. Window Query
Given a window w, find all objects o intersecting this window. The given
window w will be represented by its z-values Z,. This is in general a set of
z-values, since the given window is only congruent in exceptional cases with
the underlying grid structure. To find all objects, which are enclosed by this
window, we have to carry out a hull closure, i.e., generate all interesting z-
values.

Qwindow = {0|Z7j No.Z 7£ @ & o € Q}
= {ol3z € Z}:2co0Z & o€}

3. Region Query
Given a region of arbitrary shape r, find all objects intersecting this region.
In contrast to the window query, where the search region has rectangular shape,
the region query encompasses more general shapes. However, from the view of
query processing using z-values the region query can be handled analogously
to the window query, i.e., for a given region r and its corresponding set of
z-values 7, the query could be expressed in the following way:

Qregion = {0|Z:_QOZ7£®&OEQ}
= {o|3z€Z:2€07Z & o€}

4. Intersection Query
Given an object o; (or a set), find all pairs of objects (o0, o) intersecting each
other:
Qintersection = 1(0,01)|3z € 0p.Z 1 z € 0.7 & 0 € O}

Note that is not possible to express such a query using the ObjectStore query
interface, since ObjectStore does not offer a tuple constructor. A more relaxed
version of the above query which can be answered using the ObjectStore query
facility would be

Qintersection = {0|E|Z €o0/:z¢€ (0k-Z>+ & o€ Q}

5. Enclosure Query
Given an object og, find all objects enclosing this object completely.

Qenclosure = {0|\V/Z € Ok-Z 1z e M &oe Q}

This query would be again inefficient since for all (geo-) objects of extent
the lower hull would be computed. More efficient variations are:

Qenclosure = 10|Vz € 0p. Z,3i > |z| : pi(2) € 0.7 & 0 € Q}

and

Qenclosure = {0|\V/Z S Ok-Z, Jdozez & o€ Q}

6. Containment Query
Given an object og, find all objects enclosed by o.

Qcontainment = {0|\V/Z € O-Z S Ok-Z & 0 € Q}

7. Distance Query
Given an object og, find all objects within a distance d to o.

Qdistance = 0|37 € (qbbuger(d)(ok.Z))+ iz €0/ & o€}

8. Neighborhood-Query
Find all neighbors of a given object o.

Qneighbor = {0|E|Z S (qbbuﬂer(l)(ok-z))—l— tz €07 &o € Q}

9. Northwest-Query
Find all objects situated in the northwest direction of a given object og. This
query can be expressed by combining two of the introduced ¢-functions.

Qnorthwest = {0|E|Z S ((qbnorthqbwest)(ok-z))-l_ cz€0/&o€ Q}

10. Nearest (Farthest) Object(s)
This kind of query can only be expressed in an unsatisfactory way, since one
has to find first the nearest (farthest) distance before the hull closure can be
conducted.

Qnearest_object — {0|E|Z € (quin(buﬂer(d))(ok-z))—l— tz €04 &o € Q}
Qfarthest_object — {0|E|Z € (Qbmax(buﬂer(d))(ok-z))—l— tz €04 &o € Q}

As the reader may have noticed, the first three queries could have been subsumed
under the intersection query, although the given formulation of the intersection query
is geared toward existing objects.

4.1. Representation of Z-values

To handle the z-values in the context of the database systems efficiently, one has to
find a data structure that can be manipulated easily and efficiently. To do this, we
found that transforming the tuple (z-value, z-value-length) to an unsigned integer
is the most promising way. One possible transformation is

2 = b-n+1
with
o 2': new z-value;

e b: a zero-padded binary representation of the z-value;

e 1n: arbitrary number, which has to be at least greater than a certain minimum;
e [: number of valid digits, i.e., the z-value length.

The above formula transforms the tuple (z-value, z-value-length) to one unique

integer-value. This transformation is not dense, but it is topology preserving (in
terms of z-ordering), which means that region queries can be expressed in the most
natural way.
For example, for the granularity of 6 the z-value 001 is padded to 001000 = 8. The
length of the given z-values is 3 and thus one gets z/ = 8-n + 3 for some given n. By
choosing n greater than a certain number, it is possible to extract easily the length
of the z-value. To guarantee a fast transformation, n should preferably be chosen
to the basis 2.

5. QUERY REWRITING

5.1. ObjectStore Query Interface

The syntax of ObjectStore queries® is quite simple if one assumes only (very) simple
operations. The general structure of a query is any_extent[: int_expression
:], whereby we assume in the sequel, that each class has an extent consisting of
all objects of this specific class. This query returns all the objects satisfying the
int_expression, i.e., the int_expression is unequal to 0. Existential queries can
be expressed by enclosing the “where clause” into [% %] brackets. This query returns
only one object of the extent satisfying the given predicate. If none is found, an
exception is raised.

It should be mentioned that it is not possible to express a join between two extents
in a declarative fashion. Possible work arounds prohibit query optimization. A more
detailed description of the query interface and query optimization can be found in

[OHMS92)].

5.2. Optimizing Queries Containing Spatial Predicates

Optimizing spatial queries is somewhat different to “conventional” query optimization
since queries frequently consist of a spatial and a non-spatial (thematic) part whereby

the spatial part normally includes expensive predicates in terms of computational

cost. Our query interface, which is built on top of the ObjectStore query interface,

elaborates only on the spatial part, that is, rewrites and optimizes the spatial part

using z-values. This rewritten query is submitted together with the non-spatial part

to the ObjectStore query optimizer. The overall architecture is depicted in figure 3.

Generally, all possible queries containing spatial predicates and taking advantage of

z-ordering have to undergo the following transition:

GEO-QUERY(...) — z-value-condition(s) + geo-query(...)

>We will restrict our explanations, however, to the program interface since they apply to the
ad-hoc interface with some restrictions too.

This statement illustrates that the original query is transformed to an augmented
query, whereby the first selection is performed using the z-value condition (filter
step), generated in the process of rewriting the query. All objects which have passed
this z-value test successfully form a set of candidates, which has to be postprocessed
by applying the remaining predicates. Postprocessing is necessary since the final
evaluation must be done using the exact geometries.

As can be seen from figure 3 it is necessary to hold some additional information to
evaluate the submitted query. To avoid, for example, the superfluous generation of
not existing z-values while applying the ¢-functions, it is beneficial to keep track of
existing z-values. One further needs the ObjectStore query interface or the meta-
object protocol to acquire further information.

Query

Spatial Query Processor additional information

| nonspatial partl | spatial part

ObjectStore query interface

z-value condition +
nonspatial part of the query +

exact geometry part

ObjectStore query interface

Figure 3: Architecture of the Query Processor

5.3. Example: Intersection Query

Assume that we are interested in finding the place where the television tower in
FEast-Berlin (tvteb) is located. The tower is represented in our example by the z-
value € 1000’ © (extended object, i.e., not point). Let us further assume that the
maximum length (granularity) of the z-values is six (¢ = 6) and that there exists an
extent of z-values, whereby each z-value can occur multiple times and each existing
z-value is at least associated with one object.

Hence, the intersection query would be expressed in the following way:

Extended_0Object * tvteb;
extent[: INTERSECTION(tvteb) :1;

By using
Qintersection = {0|E|Z €o0/:z¢€ (0k-Z>+ & o€ Q}

SWe give the z-values using their 0, 1-representation since we found it more instructive.

the query is tranformed to ”

extent[: (zvalue == "1000%" || zvalue == "100" || zvalue == "10" ||

zvalue == "1") && intersection(geometry, tvteb->geometry) :];

Assuming the transformation given in section 4.1, the intersection query can be
further transformed to (n = 5) intervals and integers. The final final query would

be:

extent[: (161 >= zvalue && zvalue <= 181)
&% intersection(geometry, tvteb->geometry) :];

This query returns the the place we are looking for: the Alexanderplatz.

As can be seen from the above query it is not necessary for all elements to test
explicitly if they are enclosed in the (discrete) set of z-values. The transformation
given above enables one to regroup the z-value set and identify intervals. From the
viewpoint of query processing, this test can be performed much more faster. It is
further noteworthy, that this query can be processed in at least an index-supported
manner by creating indices on z-values.

6. CONCLUSION AND FUTURE WORK

In this paper we have shown that the technique of z-ordering is general enough to be
applied in combination with (object-oriented) database systems. One gets the most
out of the offered database functionality without substantial loss of performance
compared to proprietary systems.

It should be noted that the z-ordering approach described in this paper does not
rely on precomputed relationships between spatial objects. Whenever a new spatial
object is entered into the database, it is not necessary to determine and to establish
topological relations to all its neighboring objects. It is sufficient to compute the
associated z-value set. Existing objects may be disregarded while inserting a new
spatial object into the database. In particular, this makes it easy to compute spatial
joins between objects coming from different sources.

Furthermore, it has been demonstrated that the concept of the ¢-function can be
applied in this setting to enable the optimization and processing of user-defined
functions in at least an index-supported way. Hence, the combination of z-ordering
and ¢-function seems very useful, since one can use spatial indexing and user-
defined functions to compute spatial joins in a straightforward way with a (hopefully)
substantial performance gain. Although we can not report performance results at
the moment, first tests are promising.

Current and future work on the optimizer includes the integration of not yet imple-
mented query functionality and further optimization.

ACKNOWLEDGEMENT

We gratefully acknowledge the interesting discussions with Oliver Giinther and his
careful revision of drafts of this paper.

"Writing ¢ €1000%°° is not allowed in ObjectStore and is only used here to express the prefix
feature of the z-values, i.e., all intersecting z-regions share the same prefix. The star is used as a
wildcard for zero or more digits following the prefixing sequence of digits.

REFERENCES

[BKS93]

[Ege94]

[GGY4]

[GLY4]

[GRO3]

[Giiss]
[Gi193]

[Kol90]

[LLOWOI1]

[Mol92]

[OHMS92]

[OMsS]

[SV92]

Thomas Brinkhoff, Hans-Peter Kriegel, and Ralf Schneider.
Comparison of approximations of complex objects used for

approximation-based query processing in spatial database systems.
In Proc. 9th Int. Conf. on Data Engineering, pages 40-49, 1993.

Max J. Egenhofer. Spatial SQL: A query and presentation
language. IEEFE Transactions of Knowledge and Data Engineering,
6(1), February 1994.

Volker Gaede and Oliver Giinther. Processing joins with user-
defined functions. Technical Report 94-013, ICSI, Berkeley,
California, March 1994.

Oliver Giinther and Johannes Lamberts. Object-oriented
techniques for the management of geographic and environmental
data. The computer journal, 37(1), 1994.

Oliver Gunther and Wolf-Fritz Riekert. The design of GODOT:
An object-oriented geographic information system. In IFEE Data
Engineering Bulletin, September 1993.

Oliver Giinther. Efficient Structures for Geometric Data
Management. Springer-Verlag, 1988.

Oliver Giinther. Efficient computation of spatial joins. In Proc.

9th Int. Conf. on Data Engineering, 1993.

Curt P. Kolovson. [Indexing Techniques for Multi-Dimensional
Spatial Data and Historical Data in Database Management
Systems. PhD thesis, University of California at Berkeley, 1990.

Charles Lamb, G. Landis, Jack Orenstein, and D. Weinreb. The
ObjectStore database system. Communications of the ACM,
10(34), October 1991.

Martien Molenaar. Formal data structures and query spaces.
In Konzeption und FEinsatz von Umuweltinformationssystemen.
Springer-Verlag, 1992.

Jack Orenstein, Sam Haradhvala, Benson Margulies, and Don
Sakahara. Query processing in the ObjectStore database system.
In Proc. of the 1993 ACM Int. Conf. on the Management of Data,
SIGMOD Record, volume 22, pages 403-412, June 1992.

Jack A. Orenstein and Frank Manola. Probe: Spatial data
modeling and query processing in an image database application.
IEEFE Transactions on Software FEngineering, 14:611-629, May
1988.

Michel Scholl and Agnes Voisard. Object oriented database system
for geographic applications: An experiment with Oy. In The O,
BOOK, pages 585—618. Morgan Kaufmann, San Mateo, California,
1992.

