Multimedia University Seminar, 10 Sep. 2013

II I I II IC II HOCHSCHULE DER MEDIEN

PERSONAL CLOUD

Prof. Dr. Wolf-Fritz Riekert & Ralph Konyen Stuttgart Media University, Germany

<u>mailto:riekert@hdm-stuttgart.de</u> <u>http://www.hdm-stuttgart.de/~riekert</u>

COPYRIGHT © W.-F. RIEKERT, 10/09/13

CLOUD SERVICES

II I I II I II II HOCHSCHULE DER MEDIEN

Cloud Services

- Idea: information technology (IT) as a commodity
 ⇒ like electricity from a wall socket
 ⇒ or TV from the air
- Anything as a Service (XaaS)
- IT migrates into the "cloud", i.e. into the Internet
 whole computers ("virtual machines")
 - ⇒ operating system environments
 - ⇒ application software
 - ⇒ data, documents, multimedia objects

CLOUD SERVICES FOR PERSONAL USE

II I I II IC II HOCHSCHULE DER MEDIEN

Usage of cloud services in the personal environment

- home application
- mobile application

Public offers

- Internet drives: Dropbox, Google Drive ...
- licensed content (e.g. MP3, E-Book): Apple, Amazon ...
- office in the web: e.g. Google Docs & Spreadsheets ...
- webmail: the classical cloud application
- calendar, contacts: e.g. Google

Fundamental principle:

store, manage and manipulate data objects in the web

MEETING THE NEEDS IN THE PERSONAL ENVIRONMENT

II I I II IC II HOCHSCHULE DER MEDIEN

Reasons for the usage of cloud services in the personal environment

- global access to personal data objects
 - ⇒ from PC, laptop
 - ⇒ from smart phone, tablet
 - ⇒ from media players including TV, home audio systems
- data storage, data backup, data synchronization
 - ⇒ office documents on PC, laptop
 - ⇒ photos, videos from a camera
 - ⇒ calendar dates, contacts
 - ⇒ bookmarks

 \Rightarrow Cloud services are indispensable.

DOWNSIDE OF PUBLIC CLOUD SERVICES

II I I II IC II HOCHSCHULE DER MEDIEN

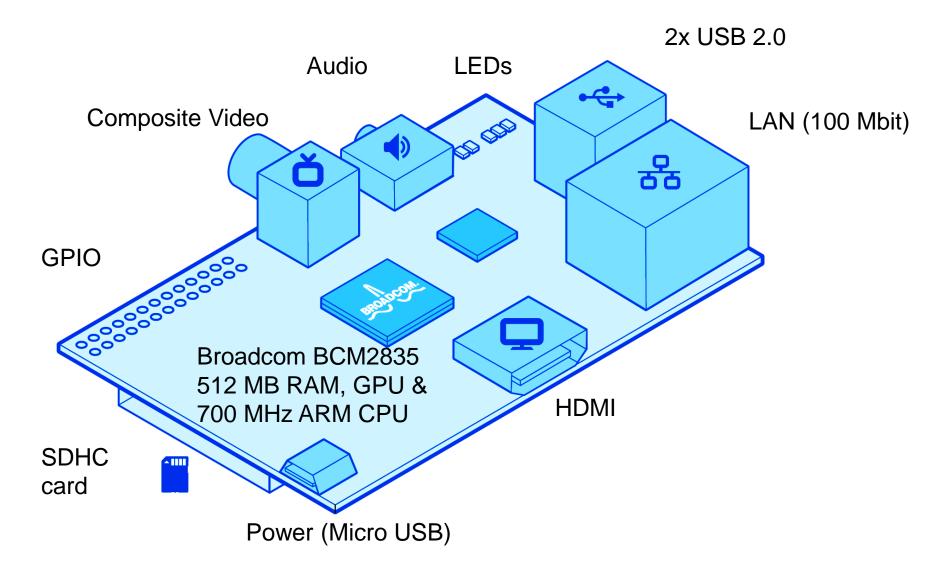
- Insufficient data privacy protection
- Relinquishment of intellectual property rights
- Enhanced eavesdropping by secret agencies
- Costs

⇒ The first few gigabytes of storage are free
⇒ non-neglectible fees apply for any additional storage
⇒ e.g. Dropbox: 99\$ per 100 gigabytes and year
⇒ for comparison: 1000 gigabytes external hard disk ~ 60\$

- Locked-in effect
 - ⇒ proprietary data formats
 - ⇒ proprietary protocols

SOLUTION

II I I II IC II HOCHSCHULE DER MEDIEN


- solution for enterprises: "Private Cloud"
 - ⇒ Run an own cloud platform
 - ⇒ Requires big computing centres
- downsizing a private cloud for personal use
 - ⇒ Referred to as "Personal Cloud"
 - ⇒ Low cost, low power
 - ⇒ A small cloud server installed in a home network
 - ⇒ Also accessible from the Internet
 - ⇒ In the 80s: "Personal Computers" as personal clients
 - ⇒ New today: "Personal Clouds" as personal servers
- demonstration
 - Final year project,
 bachelor thesis of a student (Ralph Konyen)

GENERAL IDEA

II I I II II II HOCHSCHULE DER MEDIEN

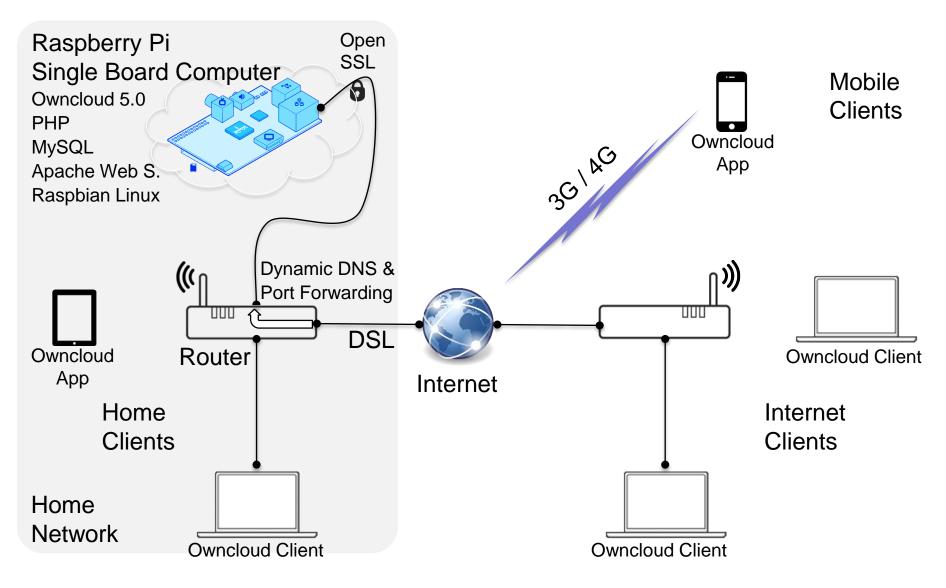
- Raspberry Pi single board computer
 Use as an inexpensive server in the home network
- "LAMP": free runtime environment
 - ⇒ Linux Operating System: Raspbian (Debian derivate)
 - ⇒ Apache Webserver
 - MySQL Database Management System
 - ⇒ PHP web programming language
- OpenSSL: encrypted data transport (HTTPS et al.)
- Owncloud 5.0: free cloud server software
- Installation behind DSL router or similar residential gateway
 HTTPS port forwarding
 - ⇒ NO-IP dynamic DNS service

RASPBERRY PI MODEL B REV. 2

THE BUDGET

Total	132 \$
1 TB external hard disk USB 2.0 (for data)	60 \$
8 GB SDHC card (for software)	10 \$
Cat 5 TP patch cable	5\$
Power Supply Micro USB 5V 1000mA	10 \$
Transparent case	7\$
Raspberry Pi – Model B rev. 2	40 \$

ισιαι


IJZ J

Useful additional equipment at configuration time:

- Keyboard, mouse, USB hub
- HDMI or composite video display

Later the computer can be administered remotely via SSH.

GENERAL ARCHITECTURE

OWNCLOUD FUNCTIONALITY (1)

- Internet drive functionality (file storage via WebDAV)
- File versioning, restoration of deleted files
- Web interface
- Calendar (also as CalDAV), task planner
- Address book (also as CardDAV)
- Music streaming (through Ampache)
- Photo gallery
- Bookmarking
- URL Shortening
- Viewer for PDF and ODF files

OWNCLOUD FUNCTIONALITY (2)

- Synchronisation of clients
 Windows, Mac OS, Linux clients
 Apps for Android and IOS
- User and group administration (e.g. via LDAP)
- Content sharing across groups or public URLs
- Online text editor
- Full text search
- Linkage to external storage (Dropbox, Google Docs, FTP...)
- Integrated virus scan
- Extensible via plugins

|1 | | 1]][|1 HOCHSCHULE DER MEDIEN

TYPICAL DATA RATES FOR HOME INTERNET CONNECTIONS

II I I II IC II HOCHSCHULE DER MEDIEN

(V)DSL	Mbit/sec			
Downstream	50100	16	6	2
Upstream	10	1	0,5	0,2
Cable network	Mbit/sec			
Downstream	100	50	10	
Upstream	5	2,5	1	

Download from personal cloud limited by upstream(!) data rate Upload to personal cloud limited by downstream(!) date rate

Typical DSL to DSL transfer rate 0.5 ... 1.0 Mbit/sec

Question: Is the combination of Raspberry Pi hardware plus Owncloud software fast enough to support this transfer rate?

RESULTS OF THE DEMONSTRATION PROJECT

II I I II IC II HOCHSCHULE DER MEDIEN

- All components could be installed and operated successfully.
- Internet drive & data sync functionality work satisfactory.
 - ⇒ Data download can keep up with typical DSL upstream rate of ~ 0.5...1.0 Mbit/sec.
 - Data upload is even faster from a LAN with fast Internet upstream, e.g., from a university or corporate site.
 - ⇒ Data sync requires transmission of deltas only.
 - ⇒ Solution adequate for Internet drive application
- Web interface does not reach theoretical data transfer speed: The LAMP stack is too heavy.
 - ⇒ Remedy: Overclock CPU (950 MHz instead of 700)
 - ⇒ Remedy: Use APC (Alternative PHP Cache)
 - ⇒ Thus a moderate performance can be reached.

CONCLUSION AND OUTLOOK

- The Personal Cloud objectives are feasible
 - ⇒ Effective solution
 - ⇒ Performance ranges between moderate and good
 - \Rightarrow Low cost (~ 132 \$), low power (2...5 Watts)
- Work to be done
 - More accurate measurements needed to identify bottlenecks
 - ⇒ Future Raspberry Pi models may be faster
 - Data security: detailed risk assessment of the solution needed
- Perspective:
 - Personal cloud could be easily built into future DSL routers or other residential gateways