Passivation capability of carbon black layers for screen-printed battery applications with Ag current collectors

Patrick Rassek, Erich Steiner, Timothy C. Claypole, Martin Krebs, Michael Herrenbauer


Screen-printed thin-film batteries comprise current collectors typically realised with commercially available conductive silver inks primarily designed for non-critical printed electronics applications. The avoidance of electrochemical interaction of metallic silver with the respective battery chemistry requires printing of an additional passivation layer. The wide range of printing inks available makes it difficult for researchers to select and qualify battery specific inks that ensure a long-life cycle without limitation of relevant battery performance parameters. This study presents a novel method to quantify the passivation capability of carbon black passivation layers for silver current collectors in 6.0 M potassium hydroxide and 5.8 M zinc chloride aqueous electrolyte solutions. Cyclic voltammetry is used to determine possible electrochemical interaction of passivated current collectors with the electrolyte media which constitute battery performance degrading parasitic side reactions. An innovative approach based on Faraday's law of electrolysis is presented to transform cyclic voltammogram curve progressions into comparable numerical values. The mathematical approach allows quantitative comparison of individually fabricated passivation layers with respect to their passivation capability instead of interpreting a large number of cyclic voltammograms.

Weiterführende Links:
Rassek, P., Steiner, E., Claypole, T.C. et al. Passivation capability of carbon black layers for screen-printed battery applications with Ag current collectors. Appl. Phys. A 126, 591 (2020)


Dr. Patrick Rassek  Elektronische Visitenkarte
Siebgedruckte Batterien, Funktionales Drucken, Spezialdruckverfahren (technischer Siebdruck, Tampondruck), Anti-Counterfeiting, Charakterisierung
Akademischer Mitarbeiter
Verpackungstechnik (Bachelor, 7 Semester)
Fakultät Druck und Medien
Institut für angewandte Forschung (IAF)
085b, Nobelstraße 10 (Technikbau)
0711 8923-2111

Eingetragen von

Dr. Patrick Rassek  Elektronische Visitenkarte

Mehr zu diesem Autor